Analysis Beispiele

Ermitteln, wo ansteigend/abfallend mittels Ableitungen f(x)=19x+1/x
Schritt 1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.3
Mutltipliziere mit .
Schritt 1.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1
Schreibe als um.
Schritt 1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.4
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 1.1.5
Stelle die Terme um.
Schritt 1.2
Die erste Ableitung von nach ist .
Schritt 2
Setze die erste Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Setze die erste Ableitung gleich .
Schritt 2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.3
Finde den Hauptnenner der Terme in der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 2.3.2
Das kleinste gemeinsame Vielfache eines beliebigen Ausdrucks ist der Ausdruck.
Schritt 2.4
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Multipliziere jeden Term in mit .
Schritt 2.4.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.1.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 2.4.2.1.2
Kürze den gemeinsamen Faktor.
Schritt 2.4.2.1.3
Forme den Ausdruck um.
Schritt 2.5
Löse die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1
Schreibe die Gleichung als um.
Schritt 2.5.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.1
Teile jeden Ausdruck in durch .
Schritt 2.5.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.5.2.2.1.2
Dividiere durch .
Schritt 2.5.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.3.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 2.5.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 2.5.4
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.4.1
Schreibe als um.
Schritt 2.5.4.2
Jede Wurzel von ist .
Schritt 2.5.4.3
Mutltipliziere mit .
Schritt 2.5.4.4
Vereinige und vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.4.4.1
Mutltipliziere mit .
Schritt 2.5.4.4.2
Potenziere mit .
Schritt 2.5.4.4.3
Potenziere mit .
Schritt 2.5.4.4.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.5.4.4.5
Addiere und .
Schritt 2.5.4.4.6
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.4.4.6.1
Benutze , um als neu zu schreiben.
Schritt 2.5.4.4.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.5.4.4.6.3
Kombiniere und .
Schritt 2.5.4.4.6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.4.4.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 2.5.4.4.6.4.2
Forme den Ausdruck um.
Schritt 2.5.4.4.6.5
Berechne den Exponenten.
Schritt 2.5.5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.5.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 2.5.5.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 2.5.5.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 3
Die Werte, die die Ableitung gleich machen, sind .
Schritt 4
Ermittele, wo die Ableitung nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 4.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 4.2.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.1
Schreibe als um.
Schritt 4.2.2.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 4.2.2.3
Plus oder Minus ist .
Schritt 5
Teile in separate Intervalle um die -Werte herum, sodass die Ableitung gleich oder nicht definiert ist.
Schritt 6
Setze einen Wert aus dem Intervall in die Ableitung ein, um zu bestimmen, ob die Funktion ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1
Potenziere mit .
Schritt 6.2.1.2
Dividiere durch .
Schritt 6.2.1.3
Mutltipliziere mit .
Schritt 6.2.2
Addiere und .
Schritt 6.2.3
Die endgültige Lösung ist .
Schritt 6.3
Bei ist die Ableitung . Da dies positiv ist, steigt die Funktion im Intervall an.
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 7
Setze einen Wert aus dem Intervall in die Ableitung ein, um zu bestimmen, ob die Funktion ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 7.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1.1
Potenziere mit .
Schritt 7.2.1.2
Dividiere durch .
Schritt 7.2.1.3
Mutltipliziere mit .
Schritt 7.2.2
Addiere und .
Schritt 7.2.3
Die endgültige Lösung ist .
Schritt 7.3
Bei ist die Ableitung . Da dies negativ ist, nimmt die Funktion im Intervall ab.
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 8
Setze einen Wert aus dem Intervall in die Ableitung ein, um zu bestimmen, ob die Funktion ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 8.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1.1
Potenziere mit .
Schritt 8.2.1.2
Dividiere durch .
Schritt 8.2.1.3
Mutltipliziere mit .
Schritt 8.2.2
Addiere und .
Schritt 8.2.3
Die endgültige Lösung ist .
Schritt 8.3
Bei ist die Ableitung . Da dies negativ ist, nimmt die Funktion im Intervall ab.
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 9
Setze einen Wert aus dem Intervall in die Ableitung ein, um zu bestimmen, ob die Funktion ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 9.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.1.1
Potenziere mit .
Schritt 9.2.1.2
Dividiere durch .
Schritt 9.2.1.3
Mutltipliziere mit .
Schritt 9.2.2
Addiere und .
Schritt 9.2.3
Die endgültige Lösung ist .
Schritt 9.3
Bei ist die Ableitung . Da dies positiv ist, steigt die Funktion im Intervall an.
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 10
Liste die Intervalle auf, in denen die Funktion ansteigt und in denen sie abfällt.
Ansteigend im Intervall:
Abfallend im Intervall:
Schritt 11