Analysis Beispiele

Finde das absolute Maximum und Minimum im Intervall f(x)=x^(7/3)+x^(4/3)-3x^(1/3) , [-1,3]
,
Schritt 1
Ermittle die kritischen Punkte.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.2.1
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.1.1.2.3
Kombiniere und .
Schritt 1.1.1.2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.1.1.2.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.2.5.1
Mutltipliziere mit .
Schritt 1.1.1.2.5.2
Subtrahiere von .
Schritt 1.1.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.3.1
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.3.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.1.1.3.3
Kombiniere und .
Schritt 1.1.1.3.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.1.1.3.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.3.5.1
Mutltipliziere mit .
Schritt 1.1.1.3.5.2
Subtrahiere von .
Schritt 1.1.1.4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.1.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.4.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.1.1.4.4
Kombiniere und .
Schritt 1.1.1.4.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.1.1.4.6
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.4.6.1
Mutltipliziere mit .
Schritt 1.1.1.4.6.2
Subtrahiere von .
Schritt 1.1.1.4.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.1.1.4.8
Kombiniere und .
Schritt 1.1.1.4.9
Kombiniere und .
Schritt 1.1.1.4.10
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 1.1.1.4.11
Faktorisiere aus heraus.
Schritt 1.1.1.4.12
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.4.12.1
Faktorisiere aus heraus.
Schritt 1.1.1.4.12.2
Kürze den gemeinsamen Faktor.
Schritt 1.1.1.4.12.3
Forme den Ausdruck um.
Schritt 1.1.1.4.13
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.1.1.5
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.5.1
Kombiniere und .
Schritt 1.1.1.5.2
Kombiniere und .
Schritt 1.1.2
Die erste Ableitung von nach ist .
Schritt 1.2
Setze die erste Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Setze die erste Ableitung gleich .
Schritt 1.2.2
Finde den Hauptnenner der Terme in der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 1.2.2.2
Da sowohl Zahlen als auch Variablen enthält, sind zwei Schritte notwendig, um das kgV zu finden. Finde das kgV für den numerischen Teil und anschließend für den variablen Teil .
Schritt 1.2.2.3
Das kgV ist die kleinste positive Zahl, die von all den Zahlen ohne Rest geteilt wird.
1. Notiere die Primfaktoren für jede Zahl.
2. Multipliziere jeden Faktor so oft, wie er maximal in einer der Zahlen vorkommt.
Schritt 1.2.2.4
Da keine Teiler außer und hat.
ist eine Primzahl
Schritt 1.2.2.5
Die Zahl ist keine Primzahl, da sie nur einen positiven Teiler hat, sich selbst.
Nicht prim
Schritt 1.2.2.6
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einer der Zahlen vorkommen.
Schritt 1.2.2.7
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einem der Terme vorkommen.
Schritt 1.2.2.8
Das kgV von ist der numerische Teil multipliziert mit dem variablen Teil.
Schritt 1.2.3
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.1
Multipliziere jeden Term in mit .
Schritt 1.2.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.2.1.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 1.2.3.2.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.2.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.3.2.1.2.2
Forme den Ausdruck um.
Schritt 1.2.3.2.1.3
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.2.1.3.1
Bewege .
Schritt 1.2.3.2.1.3.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.2.3.2.1.3.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.2.3.2.1.3.4
Addiere und .
Schritt 1.2.3.2.1.3.5
Dividiere durch .
Schritt 1.2.3.2.1.4
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 1.2.3.2.1.5
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.2.1.5.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.3.2.1.5.2
Forme den Ausdruck um.
Schritt 1.2.3.2.1.6
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.2.1.6.1
Bewege .
Schritt 1.2.3.2.1.6.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.2.3.2.1.6.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.2.3.2.1.6.4
Addiere und .
Schritt 1.2.3.2.1.6.5
Dividiere durch .
Schritt 1.2.3.2.1.7
Vereinfache .
Schritt 1.2.3.2.1.8
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.2.1.8.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 1.2.3.2.1.8.2
Faktorisiere aus heraus.
Schritt 1.2.3.2.1.8.3
Kürze den gemeinsamen Faktor.
Schritt 1.2.3.2.1.8.4
Forme den Ausdruck um.
Schritt 1.2.3.2.1.9
Mutltipliziere mit .
Schritt 1.2.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.3.1
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.3.1.1
Mutltipliziere mit .
Schritt 1.2.3.3.1.2
Mutltipliziere mit .
Schritt 1.2.4
Löse die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.1
Faktorisiere durch Gruppieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.1.1
Für ein Polynom der Form schreibe den mittleren Term als eine Summe zweier Terme um, deren Produkt gleich und deren Summe gleich ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.1.1.1
Faktorisiere aus heraus.
Schritt 1.2.4.1.1.2
Schreibe um als plus
Schritt 1.2.4.1.1.3
Wende das Distributivgesetz an.
Schritt 1.2.4.1.2
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.1.2.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 1.2.4.1.2.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 1.2.4.1.3
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 1.2.4.2
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 1.2.4.3
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.3.1
Setze gleich .
Schritt 1.2.4.3.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.3.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 1.2.4.3.2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.3.2.2.1
Teile jeden Ausdruck in durch .
Schritt 1.2.4.3.2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.3.2.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.3.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.4.3.2.2.2.1.2
Dividiere durch .
Schritt 1.2.4.4
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.4.1
Setze gleich .
Schritt 1.2.4.4.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2.4.5
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 1.3
Ermittle die Werte, wo die Ableitung nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Wandel Ausdrücke mit gebrochenen Exponenten in Wurzeln um.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1.1
Wende die Regel an, um die Potenz als Wurzel umzuschreiben.
Schritt 1.3.1.2
Wende die Regel an, um die Potenz als Wurzel umzuschreiben.
Schritt 1.3.1.3
Wende die Regel an, um die Potenz als Wurzel umzuschreiben.
Schritt 1.3.1.4
Alles, was auf angehoben wird, ist die Basis selbst.
Schritt 1.3.2
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 1.3.3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.1
Um die Wurzel auf der linken Seite der Gleichung zu entfernen, erhebe beide Seiten der Gleichung zur dritten Potenz.
Schritt 1.3.3.2
Vereinfache jede Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.2.1
Benutze , um als neu zu schreiben.
Schritt 1.3.3.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.2.2.1
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.2.2.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.3.3.2.2.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.2.2.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.3.3.2.2.1.2.2
Forme den Ausdruck um.
Schritt 1.3.3.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.2.3.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 1.3.3.3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.3.1
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 1.3.3.3.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.3.2.1
Schreibe als um.
Schritt 1.3.3.3.2.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 1.3.3.3.2.3
Plus oder Minus ist .
Schritt 1.4
Werte an jeden Wert aus, wo die Ableitung ist oder nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1.1
Ersetze durch .
Schritt 1.4.1.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1.2.1.1
Wende die Produktregel auf an.
Schritt 1.4.1.2.1.2
Wende die Produktregel auf an.
Schritt 1.4.1.2.1.3
Wende die Produktregel auf an.
Schritt 1.4.1.2.1.4
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1.2.1.4.1
Kombiniere und .
Schritt 1.4.1.2.1.4.2
Faktorisiere das negative Vorzeichen heraus.
Schritt 1.4.1.2.1.4.3
Potenziere mit .
Schritt 1.4.1.2.1.4.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.4.1.2.1.4.5
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 1.4.1.2.1.4.6
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.4.1.2.1.4.7
Addiere und .
Schritt 1.4.1.2.1.5
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.4.1.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.4.1.2.3
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1.2.3.1
Mutltipliziere mit .
Schritt 1.4.1.2.3.2
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1.2.3.2.1
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.4.1.2.3.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.4.1.2.3.2.3
Addiere und .
Schritt 1.4.1.2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.4.1.2.5
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1.2.5.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1.2.5.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.4.1.2.5.1.2
Forme den Ausdruck um.
Schritt 1.4.1.2.5.2
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1.2.5.2.1
Berechne den Exponenten.
Schritt 1.4.1.2.5.2.2
Bringe auf die linke Seite von .
Schritt 1.4.2
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.2.1
Ersetze durch .
Schritt 1.4.2.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.2.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.2.2.1.1
Schreibe als um.
Schritt 1.4.2.2.1.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.4.2.2.1.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.2.2.1.3.1
Kürze den gemeinsamen Faktor.
Schritt 1.4.2.2.1.3.2
Forme den Ausdruck um.
Schritt 1.4.2.2.1.4
Potenziere mit .
Schritt 1.4.2.2.1.5
Schreibe als um.
Schritt 1.4.2.2.1.6
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.4.2.2.1.7
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.2.2.1.7.1
Kürze den gemeinsamen Faktor.
Schritt 1.4.2.2.1.7.2
Forme den Ausdruck um.
Schritt 1.4.2.2.1.8
Potenziere mit .
Schritt 1.4.2.2.1.9
Schreibe als um.
Schritt 1.4.2.2.1.10
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.4.2.2.1.11
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.2.2.1.11.1
Kürze den gemeinsamen Faktor.
Schritt 1.4.2.2.1.11.2
Forme den Ausdruck um.
Schritt 1.4.2.2.1.12
Berechne den Exponenten.
Schritt 1.4.2.2.1.13
Mutltipliziere mit .
Schritt 1.4.2.2.2
Vereinfache durch Addieren von Zahlen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.2.2.2.1
Addiere und .
Schritt 1.4.2.2.2.2
Addiere und .
Schritt 1.4.3
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.3.1
Ersetze durch .
Schritt 1.4.3.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.3.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.3.2.1.1
Schreibe als um.
Schritt 1.4.3.2.1.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.4.3.2.1.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.3.2.1.3.1
Kürze den gemeinsamen Faktor.
Schritt 1.4.3.2.1.3.2
Forme den Ausdruck um.
Schritt 1.4.3.2.1.4
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 1.4.3.2.1.5
Schreibe als um.
Schritt 1.4.3.2.1.6
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.4.3.2.1.7
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.3.2.1.7.1
Kürze den gemeinsamen Faktor.
Schritt 1.4.3.2.1.7.2
Forme den Ausdruck um.
Schritt 1.4.3.2.1.8
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 1.4.3.2.1.9
Schreibe als um.
Schritt 1.4.3.2.1.10
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.4.3.2.1.11
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.3.2.1.11.1
Kürze den gemeinsamen Faktor.
Schritt 1.4.3.2.1.11.2
Forme den Ausdruck um.
Schritt 1.4.3.2.1.12
Berechne den Exponenten.
Schritt 1.4.3.2.1.13
Mutltipliziere mit .
Schritt 1.4.3.2.2
Vereinfache durch Addieren von Zahlen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.3.2.2.1
Addiere und .
Schritt 1.4.3.2.2.2
Addiere und .
Schritt 1.4.4
Liste all Punkte auf.
Schritt 2
Werte die enthaltenen Endpunkte aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Ersetze durch .
Schritt 2.1.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1.1
Schreibe als um.
Schritt 2.1.2.1.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.1.2.1.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1.3.1
Kürze den gemeinsamen Faktor.
Schritt 2.1.2.1.3.2
Forme den Ausdruck um.
Schritt 2.1.2.1.4
Potenziere mit .
Schritt 2.1.2.1.5
Schreibe als um.
Schritt 2.1.2.1.6
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.1.2.1.7
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1.7.1
Kürze den gemeinsamen Faktor.
Schritt 2.1.2.1.7.2
Forme den Ausdruck um.
Schritt 2.1.2.1.8
Potenziere mit .
Schritt 2.1.2.1.9
Schreibe als um.
Schritt 2.1.2.1.10
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.1.2.1.11
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1.11.1
Kürze den gemeinsamen Faktor.
Schritt 2.1.2.1.11.2
Forme den Ausdruck um.
Schritt 2.1.2.1.12
Berechne den Exponenten.
Schritt 2.1.2.1.13
Mutltipliziere mit .
Schritt 2.1.2.2
Vereinfache durch Addieren von Zahlen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.2.1
Addiere und .
Schritt 2.1.2.2.2
Addiere und .
Schritt 2.2
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Ersetze durch .
Schritt 2.2.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1.1
Faktorisiere das negative Vorzeichen heraus.
Schritt 2.2.2.1.2
Potenziere mit .
Schritt 2.2.2.1.3
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.2.2.1.4
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 2.2.2.1.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.2.2.1.6
Addiere und .
Schritt 2.2.2.2
Vereinfache durch Addieren von Termen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.2.1
Subtrahiere von .
Schritt 2.2.2.2.2
Addiere und .
Schritt 2.3
Liste all Punkte auf.
Schritt 3
Vergleiche die für jeden Wert von gefundenen -Werte, um das absolute Maximum und das absolute Minimum im angegebenen Intervall zu bestimmen. Das Maximum wird beim größten -Wert und das Minimum beim niedrigsten -Wert auftreten.
Absolutes Maximum:
Absolutes Minimum:
Schritt 4