Analysis Beispiele

Finde das absolute Maximum und Minimum im Intervall f(x)=(x^2-36)/(x^2+36) , [-36,36]
,
Schritt 1
Ermittle die kritischen Punkte.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.1
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 1.1.1.2
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.2.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.1.2.4
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.2.4.1
Addiere und .
Schritt 1.1.1.2.4.2
Bringe auf die linke Seite von .
Schritt 1.1.1.2.5
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.1.2.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.2.7
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.1.2.8
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.2.8.1
Addiere und .
Schritt 1.1.1.2.8.2
Mutltipliziere mit .
Schritt 1.1.1.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.3.1
Wende das Distributivgesetz an.
Schritt 1.1.1.3.2
Wende das Distributivgesetz an.
Schritt 1.1.1.3.3
Wende das Distributivgesetz an.
Schritt 1.1.1.3.4
Wende das Distributivgesetz an.
Schritt 1.1.1.3.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.3.5.1
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.3.5.1.1
Subtrahiere von .
Schritt 1.1.1.3.5.1.2
Addiere und .
Schritt 1.1.1.3.5.2
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.3.5.2.1
Mutltipliziere mit .
Schritt 1.1.1.3.5.2.2
Mutltipliziere mit .
Schritt 1.1.1.3.5.3
Addiere und .
Schritt 1.1.2
Die erste Ableitung von nach ist .
Schritt 1.2
Setze die erste Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Setze die erste Ableitung gleich .
Schritt 1.2.2
Setze den Zähler gleich Null.
Schritt 1.2.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.1
Teile jeden Ausdruck in durch .
Schritt 1.2.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.3.2.1.2
Dividiere durch .
Schritt 1.2.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.3.1
Dividiere durch .
Schritt 1.3
Ermittle die Werte, wo die Ableitung nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 1.4
Werte an jeden Wert aus, wo die Ableitung ist oder nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1.1
Ersetze durch .
Schritt 1.4.1.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1.2.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1.2.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 1.4.1.2.1.2
Subtrahiere von .
Schritt 1.4.1.2.2
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1.2.2.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 1.4.1.2.2.2
Addiere und .
Schritt 1.4.1.2.3
Dividiere durch .
Schritt 1.4.2
Liste all Punkte auf.
Schritt 2
Werte die enthaltenen Endpunkte aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Ersetze durch .
Schritt 2.1.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1.1.1
Faktorisiere aus heraus.
Schritt 2.1.2.1.1.2
Schreibe als um.
Schritt 2.1.2.1.1.3
Faktorisiere aus heraus.
Schritt 2.1.2.1.1.4
Faktorisiere aus heraus.
Schritt 2.1.2.1.1.5
Faktorisiere aus heraus.
Schritt 2.1.2.1.1.6
Faktorisiere aus heraus.
Schritt 2.1.2.1.1.7
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1.1.7.1
Faktorisiere aus heraus.
Schritt 2.1.2.1.1.7.2
Kürze den gemeinsamen Faktor.
Schritt 2.1.2.1.1.7.3
Forme den Ausdruck um.
Schritt 2.1.2.1.2
Addiere und .
Schritt 2.1.2.2
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.2.1
Mutltipliziere mit .
Schritt 2.1.2.2.2
Addiere und .
Schritt 2.1.2.3
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.3.1
Mutltipliziere mit .
Schritt 2.1.2.3.2
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 2.2
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Ersetze durch .
Schritt 2.2.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1.1
Faktorisiere aus heraus.
Schritt 2.2.2.1.2
Schreibe als um.
Schritt 2.2.2.1.3
Faktorisiere aus heraus.
Schritt 2.2.2.1.4
Faktorisiere aus heraus.
Schritt 2.2.2.1.5
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1.5.1
Faktorisiere aus heraus.
Schritt 2.2.2.1.5.2
Faktorisiere aus heraus.
Schritt 2.2.2.1.5.3
Faktorisiere aus heraus.
Schritt 2.2.2.1.5.4
Kürze den gemeinsamen Faktor.
Schritt 2.2.2.1.5.5
Forme den Ausdruck um.
Schritt 2.2.2.2
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.2.1
Mutltipliziere mit .
Schritt 2.2.2.2.2
Addiere und .
Schritt 2.2.2.3
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.3.1
Addiere und .
Schritt 2.2.2.3.2
Mutltipliziere mit .
Schritt 2.3
Liste all Punkte auf.
Schritt 3
Vergleiche die für jeden Wert von gefundenen -Werte, um das absolute Maximum und das absolute Minimum im angegebenen Intervall zu bestimmen. Das Maximum wird beim größten -Wert und das Minimum beim niedrigsten -Wert auftreten.
Absolutes Maximum:
Absolutes Minimum:
Schritt 4