Gib eine Aufgabe ein ...
Analysis Beispiele
,
Schritt 1
Schritt 1.1
Bestimme die erste Ableitung.
Schritt 1.1.1
Bestimme die erste Ableitung.
Schritt 1.1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.1.2
Berechne .
Schritt 1.1.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.2.3
Mutltipliziere mit .
Schritt 1.1.1.3
Berechne .
Schritt 1.1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.3.3
Mutltipliziere mit .
Schritt 1.1.1.3.4
Kombiniere und .
Schritt 1.1.1.3.5
Mutltipliziere mit .
Schritt 1.1.1.3.6
Kombiniere und .
Schritt 1.1.1.3.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.1.1.4
Stelle die Terme um.
Schritt 1.1.2
Die erste Ableitung von nach ist .
Schritt 1.2
Setze die erste Ableitung gleich , dann löse die Gleichung .
Schritt 1.2.1
Setze die erste Ableitung gleich .
Schritt 1.2.2
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Schritt 1.2.2.1
Multipliziere jeden Term in mit .
Schritt 1.2.2.2
Vereinfache die linke Seite.
Schritt 1.2.2.2.1
Vereinfache jeden Term.
Schritt 1.2.2.2.1.1
Kürze den gemeinsamen Faktor von .
Schritt 1.2.2.2.1.1.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 1.2.2.2.1.1.2
Kürze den gemeinsamen Faktor.
Schritt 1.2.2.2.1.1.3
Forme den Ausdruck um.
Schritt 1.2.2.2.1.2
Mutltipliziere mit .
Schritt 1.2.2.3
Vereinfache die rechte Seite.
Schritt 1.2.2.3.1
Mutltipliziere mit .
Schritt 1.2.3
Faktorisiere aus heraus.
Schritt 1.2.3.1
Faktorisiere aus heraus.
Schritt 1.2.3.2
Faktorisiere aus heraus.
Schritt 1.2.3.3
Faktorisiere aus heraus.
Schritt 1.2.4
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 1.2.5
Setze gleich .
Schritt 1.2.6
Setze gleich und löse nach auf.
Schritt 1.2.6.1
Setze gleich .
Schritt 1.2.6.2
Addiere zu beiden Seiten der Gleichung.
Schritt 1.2.7
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 1.3
Ermittle die Werte, wo die Ableitung nicht definiert ist.
Schritt 1.3.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 1.4
Werte an jeden Wert aus, wo die Ableitung ist oder nicht definiert ist.
Schritt 1.4.1
Berechne bei .
Schritt 1.4.1.1
Ersetze durch .
Schritt 1.4.1.2
Vereinfache.
Schritt 1.4.1.2.1
Vereinfache jeden Term.
Schritt 1.4.1.2.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 1.4.1.2.1.2
Mutltipliziere mit .
Schritt 1.4.1.2.1.3
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 1.4.1.2.1.4
Multipliziere .
Schritt 1.4.1.2.1.4.1
Mutltipliziere mit .
Schritt 1.4.1.2.1.4.2
Mutltipliziere mit .
Schritt 1.4.1.2.2
Addiere und .
Schritt 1.4.2
Berechne bei .
Schritt 1.4.2.1
Ersetze durch .
Schritt 1.4.2.2
Vereinfache.
Schritt 1.4.2.2.1
Vereinfache jeden Term.
Schritt 1.4.2.2.1.1
Potenziere mit .
Schritt 1.4.2.2.1.2
Mutltipliziere mit .
Schritt 1.4.2.2.1.3
Potenziere mit .
Schritt 1.4.2.2.1.4
Kürze den gemeinsamen Faktor von .
Schritt 1.4.2.2.1.4.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 1.4.2.2.1.4.2
Faktorisiere aus heraus.
Schritt 1.4.2.2.1.4.3
Kürze den gemeinsamen Faktor.
Schritt 1.4.2.2.1.4.4
Forme den Ausdruck um.
Schritt 1.4.2.2.1.5
Mutltipliziere mit .
Schritt 1.4.2.2.2
Subtrahiere von .
Schritt 1.4.3
Liste all Punkte auf.
Schritt 2
Schritt 2.1
Berechne bei .
Schritt 2.1.1
Ersetze durch .
Schritt 2.1.2
Vereinfache.
Schritt 2.1.2.1
Vereinfache jeden Term.
Schritt 2.1.2.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 2.1.2.1.2
Mutltipliziere mit .
Schritt 2.1.2.1.3
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 2.1.2.1.4
Multipliziere .
Schritt 2.1.2.1.4.1
Mutltipliziere mit .
Schritt 2.1.2.1.4.2
Mutltipliziere mit .
Schritt 2.1.2.2
Addiere und .
Schritt 2.2
Berechne bei .
Schritt 2.2.1
Ersetze durch .
Schritt 2.2.2
Vereinfache.
Schritt 2.2.2.1
Vereinfache jeden Term.
Schritt 2.2.2.1.1
Potenziere mit .
Schritt 2.2.2.1.2
Mutltipliziere mit .
Schritt 2.2.2.1.3
Potenziere mit .
Schritt 2.2.2.1.4
Kürze den gemeinsamen Faktor von .
Schritt 2.2.2.1.4.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 2.2.2.1.4.2
Faktorisiere aus heraus.
Schritt 2.2.2.1.4.3
Kürze den gemeinsamen Faktor.
Schritt 2.2.2.1.4.4
Forme den Ausdruck um.
Schritt 2.2.2.1.5
Mutltipliziere mit .
Schritt 2.2.2.2
Subtrahiere von .
Schritt 2.3
Liste all Punkte auf.
Schritt 3
Vergleiche die für jeden Wert von gefundenen -Werte, um das absolute Maximum und das absolute Minimum im angegebenen Intervall zu bestimmen. Das Maximum wird beim größten -Wert und das Minimum beim niedrigsten -Wert auftreten.
Absolutes Maximum:
Absolutes Minimum:
Schritt 4