Gib eine Aufgabe ein ...
Analysis Beispiele
,
Schritt 1
Schritt 1.1
Bestimme die erste Ableitung.
Schritt 1.1.1
Bestimme die erste Ableitung.
Schritt 1.1.1.1
Differenziere.
Schritt 1.1.1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.1.1.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.1.2
Berechne .
Schritt 1.1.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.2.3
Mutltipliziere mit .
Schritt 1.1.1.3
Berechne .
Schritt 1.1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.3.3
Mutltipliziere mit .
Schritt 1.1.1.4
Vereinfache.
Schritt 1.1.1.4.1
Addiere und .
Schritt 1.1.1.4.2
Stelle die Terme um.
Schritt 1.1.2
Die erste Ableitung von nach ist .
Schritt 1.2
Setze die erste Ableitung gleich , dann löse die Gleichung .
Schritt 1.2.1
Setze die erste Ableitung gleich .
Schritt 1.2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2.3
Teile jeden Ausdruck in durch und vereinfache.
Schritt 1.2.3.1
Teile jeden Ausdruck in durch .
Schritt 1.2.3.2
Vereinfache die linke Seite.
Schritt 1.2.3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 1.2.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.3.2.1.2
Dividiere durch .
Schritt 1.2.3.3
Vereinfache die rechte Seite.
Schritt 1.2.3.3.1
Kürze den gemeinsamen Teiler von und .
Schritt 1.2.3.3.1.1
Faktorisiere aus heraus.
Schritt 1.2.3.3.1.2
Kürze die gemeinsamen Faktoren.
Schritt 1.2.3.3.1.2.1
Faktorisiere aus heraus.
Schritt 1.2.3.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.2.3.3.1.2.3
Forme den Ausdruck um.
Schritt 1.3
Ermittle die Werte, wo die Ableitung nicht definiert ist.
Schritt 1.3.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 1.4
Werte an jeden Wert aus, wo die Ableitung ist oder nicht definiert ist.
Schritt 1.4.1
Berechne bei .
Schritt 1.4.1.1
Ersetze durch .
Schritt 1.4.1.2
Vereinfache.
Schritt 1.4.1.2.1
Vereinfache jeden Term.
Schritt 1.4.1.2.1.1
Kombiniere und .
Schritt 1.4.1.2.1.2
Wende die Produktregel auf an.
Schritt 1.4.1.2.1.3
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 1.4.1.2.1.4
Potenziere mit .
Schritt 1.4.1.2.1.5
Kombiniere und .
Schritt 1.4.1.2.1.6
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.4.1.2.2
Ermittle den gemeinsamen Nenner.
Schritt 1.4.1.2.2.1
Schreibe als einen Bruch mit dem Nenner .
Schritt 1.4.1.2.2.2
Mutltipliziere mit .
Schritt 1.4.1.2.2.3
Mutltipliziere mit .
Schritt 1.4.1.2.2.4
Mutltipliziere mit .
Schritt 1.4.1.2.2.5
Mutltipliziere mit .
Schritt 1.4.1.2.2.6
Mutltipliziere mit .
Schritt 1.4.1.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.4.1.2.4
Vereinfache jeden Term.
Schritt 1.4.1.2.4.1
Mutltipliziere mit .
Schritt 1.4.1.2.4.2
Mutltipliziere mit .
Schritt 1.4.1.2.5
Vereinfache durch Addieren und Subtrahieren.
Schritt 1.4.1.2.5.1
Addiere und .
Schritt 1.4.1.2.5.2
Subtrahiere von .
Schritt 1.4.2
Liste all Punkte auf.
Schritt 2
Schritt 2.1
Berechne bei .
Schritt 2.1.1
Ersetze durch .
Schritt 2.1.2
Vereinfache.
Schritt 2.1.2.1
Vereinfache jeden Term.
Schritt 2.1.2.1.1
Mutltipliziere mit .
Schritt 2.1.2.1.2
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 2.1.2.1.3
Mutltipliziere mit .
Schritt 2.1.2.2
Vereinfache durch Addieren von Zahlen.
Schritt 2.1.2.2.1
Addiere und .
Schritt 2.1.2.2.2
Addiere und .
Schritt 2.2
Berechne bei .
Schritt 2.2.1
Ersetze durch .
Schritt 2.2.2
Vereinfache.
Schritt 2.2.2.1
Vereinfache jeden Term.
Schritt 2.2.2.1.1
Mutltipliziere mit .
Schritt 2.2.2.1.2
Potenziere mit .
Schritt 2.2.2.1.3
Mutltipliziere mit .
Schritt 2.2.2.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 2.2.2.2.1
Addiere und .
Schritt 2.2.2.2.2
Subtrahiere von .
Schritt 2.3
Liste all Punkte auf.
Schritt 3
Vergleiche die für jeden Wert von gefundenen -Werte, um das absolute Maximum und das absolute Minimum im angegebenen Intervall zu bestimmen. Das Maximum wird beim größten -Wert und das Minimum beim niedrigsten -Wert auftreten.
Absolutes Maximum:
Absolutes Minimum:
Schritt 4