Analysis Beispiele

Bestimme, wo dy/dx gleich null ist 9x^2+25y^2=225
Schritt 1
Differenziere beide Seiten der Gleichung.
Schritt 2
Differenziere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Mutltipliziere mit .
Schritt 2.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.2.3
Ersetze alle durch .
Schritt 2.3.3
Schreibe als um.
Schritt 2.3.4
Mutltipliziere mit .
Schritt 2.4
Stelle die Terme um.
Schritt 3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Schritt 5
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Teile jeden Ausdruck in durch .
Schritt 5.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.2.1.2
Forme den Ausdruck um.
Schritt 5.2.2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.2.2.2
Dividiere durch .
Schritt 5.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.3.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.3.1.1
Faktorisiere aus heraus.
Schritt 5.2.3.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.3.1.2.1
Faktorisiere aus heraus.
Schritt 5.2.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.2.3.1.2.3
Forme den Ausdruck um.
Schritt 5.2.3.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 6
Ersetze durch .
Schritt 7
Setze , löse dann nach , ausgedrückt mittels , auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Setze den Zähler gleich Null.
Schritt 7.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Teile jeden Ausdruck in durch .
Schritt 7.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 7.2.2.1.2
Dividiere durch .
Schritt 7.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.3.1
Dividiere durch .
Schritt 8
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 8.1.1.2
Mutltipliziere mit .
Schritt 8.1.2
Addiere und .
Schritt 8.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1
Teile jeden Ausdruck in durch .
Schritt 8.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 8.2.2.1.2
Dividiere durch .
Schritt 8.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.3.1
Dividiere durch .
Schritt 8.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 8.4
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.4.1
Schreibe als um.
Schritt 8.4.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 8.5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.5.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 8.5.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 8.5.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 9
Ermittle die Punkte an denen .
Schritt 10