Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Differenziere beide Seiten der Gleichung.
Schritt 2
Die Ableitung von nach ist .
Schritt 3
Schritt 3.1
Differenziere.
Schritt 3.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2
Berechne .
Schritt 3.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.3
Mutltipliziere mit .
Schritt 3.3
Differenziere unter Anwendung der Konstantenregel.
Schritt 3.3.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.3.2
Addiere und .
Schritt 4
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Schritt 5
Ersetze durch .
Schritt 6
Schritt 6.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 6.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 6.2.1
Teile jeden Ausdruck in durch .
Schritt 6.2.2
Vereinfache die linke Seite.
Schritt 6.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 6.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 6.2.2.1.2
Dividiere durch .
Schritt 6.2.3
Vereinfache die rechte Seite.
Schritt 6.2.3.1
Dividiere durch .
Schritt 7
Schritt 7.1
Vereinfache jeden Term.
Schritt 7.1.1
Potenziere mit .
Schritt 7.1.2
Mutltipliziere mit .
Schritt 7.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 7.2.1
Subtrahiere von .
Schritt 7.2.2
Addiere und .
Schritt 8
Ermittle die Punkte an denen .
Schritt 9