Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Kombiniere und .
Schritt 2
Stelle als Funktion von auf.
Schritt 3
Schritt 3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2
Berechne .
Schritt 3.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.3
Kombiniere und .
Schritt 3.2.4
Kombiniere und .
Schritt 3.2.5
Kürze den gemeinsamen Faktor von .
Schritt 3.2.5.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.5.2
Dividiere durch .
Schritt 3.3
Berechne .
Schritt 3.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.3
Mutltipliziere mit .
Schritt 4
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5
Schritt 5.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 5.2
Vereinfache das Ergebnis.
Schritt 5.2.1
Vereinfache jeden Term.
Schritt 5.2.1.1
Potenziere mit .
Schritt 5.2.1.2
Mutltipliziere mit .
Schritt 5.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 5.2.3
Kombiniere und .
Schritt 5.2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.2.5
Vereinfache den Zähler.
Schritt 5.2.5.1
Mutltipliziere mit .
Schritt 5.2.5.2
Subtrahiere von .
Schritt 5.2.6
Ziehe das Minuszeichen vor den Bruch.
Schritt 5.2.7
Die endgültige Lösung ist .
Schritt 6
Die horizontale Tangentenlinie der Funktion ist .
Schritt 7