Analysis Beispiele

Finde die horizontale Tangente y(x)=x^4-4x+4
Schritt 1
Bestimme die Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.3
Mutltipliziere mit .
Schritt 1.3
Differenziere unter Anwendung der Konstantenregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.3.2
Addiere und .
Schritt 2
Setze die Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.3
Faktorisiere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1
Faktorisiere aus heraus.
Schritt 2.3.1.2
Faktorisiere aus heraus.
Schritt 2.3.1.3
Faktorisiere aus heraus.
Schritt 2.3.2
Schreibe als um.
Schritt 2.3.3
Da beide Terme perfekte Terme zur dritten Potenz sind, faktorisiere mithilfe der Formel für die Differenz kubischer Terme, , mit und .
Schritt 2.3.4
Faktorisiere.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.4.1
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.4.1.1
Mutltipliziere mit .
Schritt 2.3.4.1.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 2.3.4.2
Entferne unnötige Klammern.
Schritt 2.4
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2.5
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1
Setze gleich .
Schritt 2.5.2
Addiere zu beiden Seiten der Gleichung.
Schritt 2.6
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.1
Setze gleich .
Schritt 2.6.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.2.1
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 2.6.2.2
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 2.6.2.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.2.3.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.2.3.1.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 2.6.2.3.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.2.3.1.2.1
Mutltipliziere mit .
Schritt 2.6.2.3.1.2.2
Mutltipliziere mit .
Schritt 2.6.2.3.1.3
Subtrahiere von .
Schritt 2.6.2.3.1.4
Schreibe als um.
Schritt 2.6.2.3.1.5
Schreibe als um.
Schritt 2.6.2.3.1.6
Schreibe als um.
Schritt 2.6.2.3.2
Mutltipliziere mit .
Schritt 2.6.2.4
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.2.4.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.2.4.1.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 2.6.2.4.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.2.4.1.2.1
Mutltipliziere mit .
Schritt 2.6.2.4.1.2.2
Mutltipliziere mit .
Schritt 2.6.2.4.1.3
Subtrahiere von .
Schritt 2.6.2.4.1.4
Schreibe als um.
Schritt 2.6.2.4.1.5
Schreibe als um.
Schritt 2.6.2.4.1.6
Schreibe als um.
Schritt 2.6.2.4.2
Mutltipliziere mit .
Schritt 2.6.2.4.3
Ändere das zu .
Schritt 2.6.2.4.4
Schreibe als um.
Schritt 2.6.2.4.5
Faktorisiere aus heraus.
Schritt 2.6.2.4.6
Faktorisiere aus heraus.
Schritt 2.6.2.4.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.6.2.5
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.2.5.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.2.5.1.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 2.6.2.5.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.2.5.1.2.1
Mutltipliziere mit .
Schritt 2.6.2.5.1.2.2
Mutltipliziere mit .
Schritt 2.6.2.5.1.3
Subtrahiere von .
Schritt 2.6.2.5.1.4
Schreibe als um.
Schritt 2.6.2.5.1.5
Schreibe als um.
Schritt 2.6.2.5.1.6
Schreibe als um.
Schritt 2.6.2.5.2
Mutltipliziere mit .
Schritt 2.6.2.5.3
Ändere das zu .
Schritt 2.6.2.5.4
Schreibe als um.
Schritt 2.6.2.5.5
Faktorisiere aus heraus.
Schritt 2.6.2.5.6
Faktorisiere aus heraus.
Schritt 2.6.2.5.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.6.2.6
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 2.7
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 3
Löse die ursprüngliche Funktion bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 3.2.1.2
Mutltipliziere mit .
Schritt 3.2.2
Vereinfache durch Addieren und Subtrahieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1
Subtrahiere von .
Schritt 3.2.2.2
Addiere und .
Schritt 3.2.3
Die endgültige Lösung ist .
Schritt 4
Es gibt keine Tangente an einem imaginären Punkt. Der Punkt existiert nicht im reellen Koordinatensystem.
Eine Tangente kann nicht über die Wurzel ermittelt werden
Schritt 5
Die horizontalen Tangenten der Funktion sind .
Schritt 6