Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Stelle als Funktion von auf.
Schritt 2
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Mutltipliziere mit .
Schritt 2.3
Berechne .
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3
Mutltipliziere mit .
Schritt 2.4
Differenziere unter Anwendung der Konstantenregel.
Schritt 2.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.4.2
Addiere und .
Schritt 3
Schritt 3.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.2.1
Teile jeden Ausdruck in durch .
Schritt 3.2.2
Vereinfache die linke Seite.
Schritt 3.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.2.1.2
Dividiere durch .
Schritt 4
Schritt 4.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 4.2
Vereinfache das Ergebnis.
Schritt 4.2.1
Vereinfache jeden Term.
Schritt 4.2.1.1
Wende die Produktregel auf an.
Schritt 4.2.1.2
Potenziere mit .
Schritt 4.2.1.3
Potenziere mit .
Schritt 4.2.1.4
Kürze den gemeinsamen Faktor von .
Schritt 4.2.1.4.1
Faktorisiere aus heraus.
Schritt 4.2.1.4.2
Kürze den gemeinsamen Faktor.
Schritt 4.2.1.4.3
Forme den Ausdruck um.
Schritt 4.2.1.5
Multipliziere .
Schritt 4.2.1.5.1
Kombiniere und .
Schritt 4.2.1.5.2
Mutltipliziere mit .
Schritt 4.2.1.6
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.2.2
Ermittle den gemeinsamen Nenner.
Schritt 4.2.2.1
Mutltipliziere mit .
Schritt 4.2.2.2
Mutltipliziere mit .
Schritt 4.2.2.3
Schreibe als einen Bruch mit dem Nenner .
Schritt 4.2.2.4
Mutltipliziere mit .
Schritt 4.2.2.5
Mutltipliziere mit .
Schritt 4.2.2.6
Stelle die Faktoren von um.
Schritt 4.2.2.7
Mutltipliziere mit .
Schritt 4.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.2.4
Vereinfache jeden Term.
Schritt 4.2.4.1
Mutltipliziere mit .
Schritt 4.2.4.2
Mutltipliziere mit .
Schritt 4.2.5
Vereinfache durch Addieren und Subtrahieren.
Schritt 4.2.5.1
Subtrahiere von .
Schritt 4.2.5.2
Addiere und .
Schritt 4.2.6
Die endgültige Lösung ist .
Schritt 5
Die horizontale Tangentenlinie der Funktion ist .
Schritt 6