Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2
Berechne .
Schritt 1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.3
Mutltipliziere mit .
Schritt 1.3
Berechne .
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3
Mutltipliziere mit .
Schritt 1.4
Differenziere unter Anwendung der Konstantenregel.
Schritt 1.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.4.2
Addiere und .
Schritt 2
Schritt 2.1
Faktorisiere aus heraus.
Schritt 2.1.1
Faktorisiere aus heraus.
Schritt 2.1.2
Faktorisiere aus heraus.
Schritt 2.1.3
Faktorisiere aus heraus.
Schritt 2.2
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2.3
Setze gleich .
Schritt 2.4
Setze gleich und löse nach auf.
Schritt 2.4.1
Setze gleich .
Schritt 2.4.2
Löse nach auf.
Schritt 2.4.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.4.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.4.2.2.1
Teile jeden Ausdruck in durch .
Schritt 2.4.2.2.2
Vereinfache die linke Seite.
Schritt 2.4.2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.4.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.4.2.2.2.1.2
Dividiere durch .
Schritt 2.5
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 3
Schritt 3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.2
Vereinfache das Ergebnis.
Schritt 3.2.1
Vereinfache jeden Term.
Schritt 3.2.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 3.2.1.2
Mutltipliziere mit .
Schritt 3.2.1.3
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 3.2.1.4
Mutltipliziere mit .
Schritt 3.2.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 3.2.2.1
Addiere und .
Schritt 3.2.2.2
Subtrahiere von .
Schritt 3.2.3
Die endgültige Lösung ist .
Schritt 4
Schritt 4.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 4.2
Vereinfache das Ergebnis.
Schritt 4.2.1
Vereinfache jeden Term.
Schritt 4.2.1.1
Wende die Produktregel auf an.
Schritt 4.2.1.2
Potenziere mit .
Schritt 4.2.1.3
Potenziere mit .
Schritt 4.2.1.4
Kürze den gemeinsamen Faktor von .
Schritt 4.2.1.4.1
Faktorisiere aus heraus.
Schritt 4.2.1.4.2
Kürze den gemeinsamen Faktor.
Schritt 4.2.1.4.3
Forme den Ausdruck um.
Schritt 4.2.1.5
Wende die Produktregel auf an.
Schritt 4.2.1.6
Potenziere mit .
Schritt 4.2.1.7
Potenziere mit .
Schritt 4.2.1.8
Multipliziere .
Schritt 4.2.1.8.1
Kombiniere und .
Schritt 4.2.1.8.2
Mutltipliziere mit .
Schritt 4.2.1.9
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.2.2
Ermittle den gemeinsamen Nenner.
Schritt 4.2.2.1
Mutltipliziere mit .
Schritt 4.2.2.2
Mutltipliziere mit .
Schritt 4.2.2.3
Schreibe als einen Bruch mit dem Nenner .
Schritt 4.2.2.4
Mutltipliziere mit .
Schritt 4.2.2.5
Mutltipliziere mit .
Schritt 4.2.2.6
Stelle die Faktoren von um.
Schritt 4.2.2.7
Mutltipliziere mit .
Schritt 4.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.2.4
Vereinfache jeden Term.
Schritt 4.2.4.1
Mutltipliziere mit .
Schritt 4.2.4.2
Mutltipliziere mit .
Schritt 4.2.5
Vereinfache den Ausdruck.
Schritt 4.2.5.1
Subtrahiere von .
Schritt 4.2.5.2
Subtrahiere von .
Schritt 4.2.5.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.2.6
Die endgültige Lösung ist .
Schritt 5
Die horizontalen Tangenten der Funktion sind .
Schritt 6