Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2
Berechne .
Schritt 1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.3
Mutltipliziere mit .
Schritt 1.3
Berechne .
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3
Mutltipliziere mit .
Schritt 1.4
Berechne .
Schritt 1.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.4.3
Mutltipliziere mit .
Schritt 1.5
Differenziere unter Anwendung der Konstantenregel.
Schritt 1.5.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.5.2
Addiere und .
Schritt 2
Schritt 2.1
Faktorisiere die linke Seite der Gleichung.
Schritt 2.1.1
Faktorisiere aus heraus.
Schritt 2.1.1.1
Faktorisiere aus heraus.
Schritt 2.1.1.2
Faktorisiere aus heraus.
Schritt 2.1.1.3
Faktorisiere aus heraus.
Schritt 2.1.1.4
Faktorisiere aus heraus.
Schritt 2.1.1.5
Faktorisiere aus heraus.
Schritt 2.1.2
Faktorisiere.
Schritt 2.1.2.1
Faktorisiere unter der Verwendung der AC-Methode.
Schritt 2.1.2.1.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 2.1.2.1.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 2.1.2.2
Entferne unnötige Klammern.
Schritt 2.2
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2.3
Setze gleich und löse nach auf.
Schritt 2.3.1
Setze gleich .
Schritt 2.3.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.4
Setze gleich und löse nach auf.
Schritt 2.4.1
Setze gleich .
Schritt 2.4.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.5
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 3
Schritt 3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.2
Vereinfache das Ergebnis.
Schritt 3.2.1
Vereinfache jeden Term.
Schritt 3.2.1.1
Potenziere mit .
Schritt 3.2.1.2
Mutltipliziere mit .
Schritt 3.2.1.3
Potenziere mit .
Schritt 3.2.1.4
Mutltipliziere mit .
Schritt 3.2.1.5
Mutltipliziere mit .
Schritt 3.2.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 3.2.2.1
Addiere und .
Schritt 3.2.2.2
Subtrahiere von .
Schritt 3.2.2.3
Addiere und .
Schritt 3.2.3
Die endgültige Lösung ist .
Schritt 4
Schritt 4.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 4.2
Vereinfache das Ergebnis.
Schritt 4.2.1
Vereinfache jeden Term.
Schritt 4.2.1.1
Potenziere mit .
Schritt 4.2.1.2
Mutltipliziere mit .
Schritt 4.2.1.3
Potenziere mit .
Schritt 4.2.1.4
Mutltipliziere mit .
Schritt 4.2.1.5
Mutltipliziere mit .
Schritt 4.2.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 4.2.2.1
Addiere und .
Schritt 4.2.2.2
Subtrahiere von .
Schritt 4.2.2.3
Addiere und .
Schritt 4.2.3
Die endgültige Lösung ist .
Schritt 5
Die horizontalen Tangenten der Funktion sind .
Schritt 6