Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2
Berechne .
Schritt 1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.3
Mutltipliziere mit .
Schritt 1.3
Berechne .
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Die Ableitung von nach ist .
Schritt 2
Schritt 2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.2.1
Teile jeden Ausdruck in durch .
Schritt 2.2.2
Vereinfache die linke Seite.
Schritt 2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.2.1.2
Dividiere durch .
Schritt 2.2.3
Vereinfache die rechte Seite.
Schritt 2.2.3.1
Dividiere durch .
Schritt 2.3
Wende den inversen Kosinus auf beide Seiten der Gleichung an, um aus dem Kosinus herauszuziehen.
Schritt 2.4
Vereinfache die rechte Seite.
Schritt 2.4.1
Der genau Wert von ist .
Schritt 2.5
Die Kosinusfunktion ist positiv im ersten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu finden.
Schritt 2.6
Subtrahiere von .
Schritt 2.7
Ermittele die Periode von .
Schritt 2.7.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 2.7.2
Ersetze durch in der Formel für die Periode.
Schritt 2.7.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 2.7.4
Dividiere durch .
Schritt 2.8
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede Ganzzahl
Schritt 2.9
Fasse die Ergebnisse zusammen.
, für jede Ganzzahl
, für jede Ganzzahl
Schritt 3
Schritt 3.1
Schritt 3.2
Vereinfache das Ergebnis.
Schritt 3.2.1
Vereinfache jeden Term.
Schritt 3.2.1.1
Mutltipliziere mit .
Schritt 3.2.1.2
Subtrahiere ganze Umdrehungen von , bis der Winkel größer oder gleich und kleiner als ist.
Schritt 3.2.1.3
Der genau Wert von ist .
Schritt 3.2.1.4
Mutltipliziere mit .
Schritt 3.2.2
Addiere und .
Schritt 3.2.3
Die endgültige Lösung ist .
Schritt 4
Die horizontale Tangentenlinie der Funktion ist .
Schritt 5