Analysis Beispiele

Finde die horizontale Tangente f(x)=(x^2)/(x-5)
Schritt 1
Bestimme die Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 1.2
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.2
Bringe auf die linke Seite von .
Schritt 1.2.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.2.6
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.6.1
Addiere und .
Schritt 1.2.6.2
Mutltipliziere mit .
Schritt 1.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Wende das Distributivgesetz an.
Schritt 1.3.2
Wende das Distributivgesetz an.
Schritt 1.3.3
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.1.1
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.1.1.1
Bewege .
Schritt 1.3.3.1.1.2
Mutltipliziere mit .
Schritt 1.3.3.1.2
Mutltipliziere mit .
Schritt 1.3.3.2
Subtrahiere von .
Schritt 1.3.4
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.4.1
Faktorisiere aus heraus.
Schritt 1.3.4.2
Faktorisiere aus heraus.
Schritt 1.3.4.3
Faktorisiere aus heraus.
Schritt 2
Setze die Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Setze den Zähler gleich Null.
Schritt 2.2
Löse die Gleichung nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2.2.2
Setze gleich .
Schritt 2.2.3
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.1
Setze gleich .
Schritt 2.2.3.2
Addiere zu beiden Seiten der Gleichung.
Schritt 2.2.4
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 3
Löse die ursprüngliche Funktion bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 3.2.2
Subtrahiere von .
Schritt 3.2.3
Dividiere durch .
Schritt 3.2.4
Die endgültige Lösung ist .
Schritt 4
Löse die ursprüngliche Funktion bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 4.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Potenziere mit .
Schritt 4.2.2
Subtrahiere von .
Schritt 4.2.3
Dividiere durch .
Schritt 4.2.4
Die endgültige Lösung ist .
Schritt 5
Die horizontalen Tangenten der Funktion sind .
Schritt 6