Analysis Beispiele

Finde die horizontale Tangente 2cos(2x)
Schritt 1
Bestimme die Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.2.2
Die Ableitung von nach ist .
Schritt 1.2.3
Ersetze alle durch .
Schritt 1.3
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Mutltipliziere mit .
Schritt 1.3.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.3
Mutltipliziere mit .
Schritt 1.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.5
Mutltipliziere mit .
Schritt 2
Setze die Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Teile jeden Ausdruck in durch .
Schritt 2.1.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.1.2.1.2
Dividiere durch .
Schritt 2.1.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.3.1
Dividiere durch .
Schritt 2.2
Wende den inversen Sinus auf beide Seiten der Gleichung an, um aus dem Sinus herauszuziehen.
Schritt 2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Der genau Wert von ist .
Schritt 2.4
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Teile jeden Ausdruck in durch .
Schritt 2.4.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.4.2.1.2
Dividiere durch .
Schritt 2.4.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.3.1
Dividiere durch .
Schritt 2.5
Die Sinusfunktion ist positiv im ersten und zweiten Quadranten. Um die zweite Lösung zu ermitteln, subtrahiere den Referenzwinkel von , um die Lösung im zweiten Quadranten zu finden.
Schritt 2.6
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.1
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.1.1
Mutltipliziere mit .
Schritt 2.6.1.2
Addiere und .
Schritt 2.6.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.2.1
Teile jeden Ausdruck in durch .
Schritt 2.6.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.6.2.2.1.2
Dividiere durch .
Schritt 2.7
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.7.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 2.7.2
Ersetze durch in der Formel für die Periode.
Schritt 2.7.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 2.7.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.7.4.1
Kürze den gemeinsamen Faktor.
Schritt 2.7.4.2
Dividiere durch .
Schritt 2.8
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
Schritt 2.9
Fasse die Ergebnisse zusammen.
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 3
Löse die ursprüngliche Funktion bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1

Schritt 3.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.2
Forme den Ausdruck um.
Schritt 3.2.2
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Kosinus im zweiten Quadranten negativ ist.
Schritt 3.2.3
Der genau Wert von ist .
Schritt 3.2.4
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.4.1
Mutltipliziere mit .
Schritt 3.2.4.2
Mutltipliziere mit .
Schritt 3.2.5
Die endgültige Lösung ist .
Schritt 4
Die horizontale Tangentenlinie der Funktion ist .
Schritt 5