Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Differenziere.
Schritt 1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2
Berechne .
Schritt 1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.3
Mutltipliziere mit .
Schritt 2
Schritt 2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.2.1
Teile jeden Ausdruck in durch .
Schritt 2.2.2
Vereinfache die linke Seite.
Schritt 2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.2.1.2
Dividiere durch .
Schritt 3
Schritt 3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.2
Vereinfache das Ergebnis.
Schritt 3.2.1
Vereinfache jeden Term.
Schritt 3.2.1.1
Wende die Produktregel auf an.
Schritt 3.2.1.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 3.2.1.3
Potenziere mit .
Schritt 3.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.2.3
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Schritt 3.2.3.1
Mutltipliziere mit .
Schritt 3.2.3.2
Mutltipliziere mit .
Schritt 3.2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.2.5
Subtrahiere von .
Schritt 3.2.6
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.2.7
Die endgültige Lösung ist .
Schritt 4
Die horizontale Tangentenlinie der Funktion ist .
Schritt 5