Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 1.3
Vereinfache .
Schritt 1.3.1
Schreibe als um.
Schritt 1.3.2
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 1.4
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 1.4.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 1.4.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 1.4.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 2
Set each solution of as a function of .
Schritt 3
Schritt 3.1
Differenziere beide Seiten der Gleichung.
Schritt 3.2
Differenziere die linke Seite der Gleichung.
Schritt 3.2.1
Differenziere.
Schritt 3.2.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.2
Berechne .
Schritt 3.2.2.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.2.2.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2.2.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.2.1.3
Ersetze alle durch .
Schritt 3.2.2.2
Schreibe als um.
Schritt 3.2.3
Stelle die Terme um.
Schritt 3.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.4
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Schritt 3.5
Löse nach auf.
Schritt 3.5.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.5.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.5.2.1
Teile jeden Ausdruck in durch .
Schritt 3.5.2.2
Vereinfache die linke Seite.
Schritt 3.5.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.5.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.5.2.2.1.2
Forme den Ausdruck um.
Schritt 3.5.2.2.2
Kürze den gemeinsamen Faktor von .
Schritt 3.5.2.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.5.2.2.2.2
Dividiere durch .
Schritt 3.5.2.3
Vereinfache die rechte Seite.
Schritt 3.5.2.3.1
Kürze den gemeinsamen Teiler von und .
Schritt 3.5.2.3.1.1
Faktorisiere aus heraus.
Schritt 3.5.2.3.1.2
Kürze die gemeinsamen Faktoren.
Schritt 3.5.2.3.1.2.1
Faktorisiere aus heraus.
Schritt 3.5.2.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.5.2.3.1.2.3
Forme den Ausdruck um.
Schritt 3.5.2.3.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.6
Ersetze durch .
Schritt 4
Setze den Zähler gleich Null.
Schritt 5
Schritt 5.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 5.2
Vereinfache das Ergebnis.
Schritt 5.2.1
Entferne die Klammern.
Schritt 5.2.2
Addiere und .
Schritt 5.2.3
Mutltipliziere mit .
Schritt 5.2.4
Addiere und .
Schritt 5.2.5
Mutltipliziere mit .
Schritt 5.2.6
Schreibe als um.
Schritt 5.2.7
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 5.2.8
Die endgültige Lösung ist .
Schritt 6
Schritt 6.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2
Vereinfache das Ergebnis.
Schritt 6.2.1
Entferne die Klammern.
Schritt 6.2.2
Addiere und .
Schritt 6.2.3
Mutltipliziere mit .
Schritt 6.2.4
Addiere und .
Schritt 6.2.5
Mutltipliziere mit .
Schritt 6.2.6
Schreibe als um.
Schritt 6.2.7
Multipliziere.
Schritt 6.2.7.1
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 6.2.7.2
Mutltipliziere mit .
Schritt 6.2.8
Die endgültige Lösung ist .
Schritt 7
The horizontal tangent lines are
Schritt 8