Analysis Beispiele

Bestimme die Symmetrie y=(2x)/(x^2-4)
Schritt 1
Es gibt drei Arten von Symmetrie:
1. x-Achsensymmetrie
2. y-Achsensymmetrie
3. Punktsymmetrie zum Koordinatenursprung
Schritt 2
Wenn auf dem Graphen liegt, dann ist der Graph symmetrisch zur/zum:
1. x-Achse, wenn auf dem Graph existiert
1. y-Achse, wenn auf dem Graph existiert
3. Ursprung, wenn auf dem Graph existiert
Schritt 3
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Schreibe als um.
Schritt 3.2
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 4
Check if the graph is symmetric about the -axis by plugging in for .
Schritt 5
Da die Gleichung mit der ursprünglichen Gleichung nicht identisch ist, ist sie nicht symmetrisch zur x-Achse.
Nicht symmetrisch zur x-Achse
Schritt 6
Check if the graph is symmetric about the -axis by plugging in for .
Schritt 7
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Mutltipliziere mit .
Schritt 7.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 8
Da die Gleichung mit der ursprünglichen Gleichung nicht identisch ist, ist sie nicht symmetrisch zur y-Achse.
Nicht symmetrisch zur y-Achse
Schritt 9
Prüfe, ob der Graph symmetrisch zum Ursprung ist durch Einsetzen von für und für .
Schritt 10
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Mutltipliziere mit .
Schritt 10.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 11
Multipliziere beide Seiten mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Multipliziere jeden Ausdruck mit .
Schritt 11.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.1
Mutltipliziere mit .
Schritt 11.2.2
Mutltipliziere mit .
Schritt 11.3
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.3.1
Mutltipliziere mit .
Schritt 11.3.2
Mutltipliziere mit .
Schritt 12
Da die Gleichung mit der ursprünglichen Gleichung identisch ist, ist sie punktsymmetrisch zum Ursprung.
Symmetrisch bezüglich des Ursprungs
Schritt 13