Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bestimme die erste Ableitung.
Schritt 1.1.1
Differenziere.
Schritt 1.1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2
Berechne .
Schritt 1.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.3
Mutltipliziere mit .
Schritt 1.1.3
Berechne .
Schritt 1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.3
Mutltipliziere mit .
Schritt 1.1.4
Berechne .
Schritt 1.1.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.4.3
Mutltipliziere mit .
Schritt 1.2
Die erste Ableitung von nach ist .
Schritt 2
Schritt 2.1
Setze die erste Ableitung gleich .
Schritt 2.2
Faktorisiere die linke Seite der Gleichung.
Schritt 2.2.1
Faktorisiere aus heraus.
Schritt 2.2.1.1
Faktorisiere aus heraus.
Schritt 2.2.1.2
Faktorisiere aus heraus.
Schritt 2.2.1.3
Faktorisiere aus heraus.
Schritt 2.2.1.4
Faktorisiere aus heraus.
Schritt 2.2.1.5
Faktorisiere aus heraus.
Schritt 2.2.1.6
Faktorisiere aus heraus.
Schritt 2.2.1.7
Faktorisiere aus heraus.
Schritt 2.2.2
Faktorisiere mithilfe des Satzes über rationale Wurzeln.
Schritt 2.2.2.1
Wenn eine Polynomfunktion ganzzahlige Koeffizienten hat, dann hat jede rationale Nullstelle die Form , wobei ein Teiler der Konstanten und ein Teiler des Leitkoeffizienten ist.
Schritt 2.2.2.2
Ermittle jede Kombination von . Dies sind die möglichen Wurzeln der Polynomfunktion.
Schritt 2.2.2.3
Setze ein und vereinfache den Ausdruck. In diesem Fall ist der Ausdruck gleich , folglich ist eine Wurzel des Polynoms.
Schritt 2.2.2.3.1
Setze in das Polynom ein.
Schritt 2.2.2.3.2
Potenziere mit .
Schritt 2.2.2.3.3
Potenziere mit .
Schritt 2.2.2.3.4
Mutltipliziere mit .
Schritt 2.2.2.3.5
Subtrahiere von .
Schritt 2.2.2.3.6
Mutltipliziere mit .
Schritt 2.2.2.3.7
Addiere und .
Schritt 2.2.2.3.8
Subtrahiere von .
Schritt 2.2.2.4
Da eine bekannte Wurzel ist, dividiere das Polynom durch , um das Quotientenpolynom zu bestimmen. Dieses Polynom kann dann verwendet werden, um die restlichen Wurzeln zu finden.
Schritt 2.2.2.5
Dividiere durch .
Schritt 2.2.2.5.1
Stelle die zu dividierenden Polynome auf. Wenn es nicht für jeden Exponenten einen Term gibt, setze einen ein mit dem Wert .
- | - | + | - |
Schritt 2.2.2.5.2
Dividiere den Term höchster Ordnung im Dividend durch den Term höchster Ordnung im Divisor .
- | - | + | - |
Schritt 2.2.2.5.3
Multipliziere den neuen Bruchterm mit dem Teiler.
- | - | + | - | ||||||||
+ | - |
Schritt 2.2.2.5.4
Der Ausdruck muss vom Dividenden abgezogen werden, ändere also alle Vorzeichen in
- | - | + | - | ||||||||
- | + |
Schritt 2.2.2.5.5
Addiere nach dem Wechsel der Vorzeichen den letzten Dividenden des ausmultiplizierten Polynoms, um den neuen Dividenden zu finden.
- | - | + | - | ||||||||
- | + | ||||||||||
- |
Schritt 2.2.2.5.6
Ziehe die nächsten Terme vom ursprünglichen Dividenden nach unten in den aktuellen Dividenden.
- | - | + | - | ||||||||
- | + | ||||||||||
- | + |
Schritt 2.2.2.5.7
Dividiere den Term höchster Ordnung im Dividend durch den Term höchster Ordnung im Divisor .
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + |
Schritt 2.2.2.5.8
Multipliziere den neuen Bruchterm mit dem Teiler.
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
- | + |
Schritt 2.2.2.5.9
Der Ausdruck muss vom Dividenden abgezogen werden, ändere also alle Vorzeichen in
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - |
Schritt 2.2.2.5.10
Addiere nach dem Wechsel der Vorzeichen den letzten Dividenden des ausmultiplizierten Polynoms, um den neuen Dividenden zu finden.
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ |
Schritt 2.2.2.5.11
Ziehe die nächsten Terme vom ursprünglichen Dividenden nach unten in den aktuellen Dividenden.
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - |
Schritt 2.2.2.5.12
Dividiere den Term höchster Ordnung im Dividend durch den Term höchster Ordnung im Divisor .
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - |
Schritt 2.2.2.5.13
Multipliziere den neuen Bruchterm mit dem Teiler.
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - | ||||||||||
+ | - |
Schritt 2.2.2.5.14
Der Ausdruck muss vom Dividenden abgezogen werden, ändere also alle Vorzeichen in
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + |
Schritt 2.2.2.5.15
Addiere nach dem Wechsel der Vorzeichen den letzten Dividenden des ausmultiplizierten Polynoms, um den neuen Dividenden zu finden.
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
Schritt 2.2.2.5.16
Da der Rest gleich ist, ist der Quotient das endgültige Ergebnis.
Schritt 2.2.2.6
Schreibe als eine Menge von Faktoren.
Schritt 2.2.3
Faktorisiere.
Schritt 2.2.3.1
Faktorisiere unter Verwendung der binomischen Formeln.
Schritt 2.2.3.1.1
Schreibe als um.
Schritt 2.2.3.1.2
Überprüfe, ob der mittlere Term das Zweifache des Produkts der Zahlen ist, die im ersten Term und im dritten Term quadriert werden.
Schritt 2.2.3.1.3
Schreibe das Polynom neu.
Schritt 2.2.3.1.4
Faktorisiere mithilfe der trinomischen Formel für das perfekte Quadrat , wobei und .
Schritt 2.2.3.2
Entferne unnötige Klammern.
Schritt 2.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2.4
Setze gleich und löse nach auf.
Schritt 2.4.1
Setze gleich .
Schritt 2.4.2
Addiere zu beiden Seiten der Gleichung.
Schritt 2.5
Setze gleich und löse nach auf.
Schritt 2.5.1
Setze gleich .
Schritt 2.5.2
Löse nach auf.
Schritt 2.5.2.1
Setze gleich .
Schritt 2.5.2.2
Addiere zu beiden Seiten der Gleichung.
Schritt 2.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 3
Schritt 3.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 4
Schritt 4.1
Berechne bei .
Schritt 4.1.1
Ersetze durch .
Schritt 4.1.2
Vereinfache.
Schritt 4.1.2.1
Vereinfache jeden Term.
Schritt 4.1.2.1.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 4.1.2.1.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 4.1.2.1.3
Mutltipliziere mit .
Schritt 4.1.2.1.4
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 4.1.2.1.5
Mutltipliziere mit .
Schritt 4.1.2.1.6
Mutltipliziere mit .
Schritt 4.1.2.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 4.1.2.2.1
Subtrahiere von .
Schritt 4.1.2.2.2
Addiere und .
Schritt 4.1.2.2.3
Subtrahiere von .
Schritt 4.2
Berechne bei .
Schritt 4.2.1
Ersetze durch .
Schritt 4.2.2
Vereinfache.
Schritt 4.2.2.1
Vereinfache jeden Term.
Schritt 4.2.2.1.1
Potenziere mit .
Schritt 4.2.2.1.2
Potenziere mit .
Schritt 4.2.2.1.3
Mutltipliziere mit .
Schritt 4.2.2.1.4
Potenziere mit .
Schritt 4.2.2.1.5
Mutltipliziere mit .
Schritt 4.2.2.1.6
Mutltipliziere mit .
Schritt 4.2.2.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 4.2.2.2.1
Subtrahiere von .
Schritt 4.2.2.2.2
Addiere und .
Schritt 4.2.2.2.3
Subtrahiere von .
Schritt 4.3
Liste all Punkte auf.
Schritt 5