Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bestimme die erste Ableitung.
Schritt 1.1.1
Differenziere.
Schritt 1.1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2
Berechne .
Schritt 1.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.3
Mutltipliziere mit .
Schritt 1.1.3
Berechne .
Schritt 1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.3
Mutltipliziere mit .
Schritt 1.1.4
Berechne .
Schritt 1.1.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.4.3
Mutltipliziere mit .
Schritt 1.1.5
Differenziere unter Anwendung der Konstantenregel.
Schritt 1.1.5.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.5.2
Addiere und .
Schritt 1.2
Die erste Ableitung von nach ist .
Schritt 2
Schritt 2.1
Setze die erste Ableitung gleich .
Schritt 2.2
Faktorisiere die linke Seite der Gleichung.
Schritt 2.2.1
Faktorisiere aus heraus.
Schritt 2.2.1.1
Faktorisiere aus heraus.
Schritt 2.2.1.2
Faktorisiere aus heraus.
Schritt 2.2.1.3
Faktorisiere aus heraus.
Schritt 2.2.1.4
Faktorisiere aus heraus.
Schritt 2.2.1.5
Faktorisiere aus heraus.
Schritt 2.2.1.6
Faktorisiere aus heraus.
Schritt 2.2.1.7
Faktorisiere aus heraus.
Schritt 2.2.2
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Schritt 2.2.2.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 2.2.2.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 2.2.3
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 2.2.4
Schreibe als um.
Schritt 2.2.5
Faktorisiere.
Schritt 2.2.5.1
Faktorisiere.
Schritt 2.2.5.1.1
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 2.2.5.1.2
Entferne unnötige Klammern.
Schritt 2.2.5.2
Entferne unnötige Klammern.
Schritt 2.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2.4
Setze gleich und löse nach auf.
Schritt 2.4.1
Setze gleich .
Schritt 2.4.2
Addiere zu beiden Seiten der Gleichung.
Schritt 2.5
Setze gleich und löse nach auf.
Schritt 2.5.1
Setze gleich .
Schritt 2.5.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.6
Setze gleich und löse nach auf.
Schritt 2.6.1
Setze gleich .
Schritt 2.6.2
Addiere zu beiden Seiten der Gleichung.
Schritt 2.7
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 3
Schritt 3.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 4
Schritt 4.1
Berechne bei .
Schritt 4.1.1
Ersetze durch .
Schritt 4.1.2
Vereinfache.
Schritt 4.1.2.1
Vereinfache jeden Term.
Schritt 4.1.2.1.1
Potenziere mit .
Schritt 4.1.2.1.2
Potenziere mit .
Schritt 4.1.2.1.3
Mutltipliziere mit .
Schritt 4.1.2.1.4
Potenziere mit .
Schritt 4.1.2.1.5
Mutltipliziere mit .
Schritt 4.1.2.1.6
Mutltipliziere mit .
Schritt 4.1.2.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 4.1.2.2.1
Subtrahiere von .
Schritt 4.1.2.2.2
Subtrahiere von .
Schritt 4.1.2.2.3
Addiere und .
Schritt 4.1.2.2.4
Subtrahiere von .
Schritt 4.2
Berechne bei .
Schritt 4.2.1
Ersetze durch .
Schritt 4.2.2
Vereinfache.
Schritt 4.2.2.1
Vereinfache jeden Term.
Schritt 4.2.2.1.1
Potenziere mit .
Schritt 4.2.2.1.2
Potenziere mit .
Schritt 4.2.2.1.3
Mutltipliziere mit .
Schritt 4.2.2.1.4
Potenziere mit .
Schritt 4.2.2.1.5
Mutltipliziere mit .
Schritt 4.2.2.1.6
Mutltipliziere mit .
Schritt 4.2.2.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 4.2.2.2.1
Addiere und .
Schritt 4.2.2.2.2
Subtrahiere von .
Schritt 4.2.2.2.3
Subtrahiere von .
Schritt 4.2.2.2.4
Subtrahiere von .
Schritt 4.3
Berechne bei .
Schritt 4.3.1
Ersetze durch .
Schritt 4.3.2
Vereinfache.
Schritt 4.3.2.1
Vereinfache jeden Term.
Schritt 4.3.2.1.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 4.3.2.1.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 4.3.2.1.3
Mutltipliziere mit .
Schritt 4.3.2.1.4
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 4.3.2.1.5
Mutltipliziere mit .
Schritt 4.3.2.1.6
Mutltipliziere mit .
Schritt 4.3.2.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 4.3.2.2.1
Subtrahiere von .
Schritt 4.3.2.2.2
Subtrahiere von .
Schritt 4.3.2.2.3
Addiere und .
Schritt 4.3.2.2.4
Subtrahiere von .
Schritt 4.4
Liste all Punkte auf.
Schritt 5