Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bestimme die erste Ableitung.
Schritt 1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2
Berechne .
Schritt 1.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.3
Mutltipliziere mit .
Schritt 1.1.3
Berechne .
Schritt 1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.3
Mutltipliziere mit .
Schritt 1.1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.5
Vereinfache.
Schritt 1.1.5.1
Addiere und .
Schritt 1.1.5.2
Stelle die Terme um.
Schritt 1.2
Die erste Ableitung von nach ist .
Schritt 2
Schritt 2.1
Setze die erste Ableitung gleich .
Schritt 2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.3
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.3.1
Teile jeden Ausdruck in durch .
Schritt 2.3.2
Vereinfache die linke Seite.
Schritt 2.3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.2.1.2
Dividiere durch .
Schritt 2.3.3
Vereinfache die rechte Seite.
Schritt 2.3.3.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 2.4
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 2.5
Vereinfache .
Schritt 2.5.1
Schreibe als um.
Schritt 2.5.2
Vereinfache den Zähler.
Schritt 2.5.2.1
Schreibe als um.
Schritt 2.5.2.1.1
Faktorisiere aus heraus.
Schritt 2.5.2.1.2
Schreibe als um.
Schritt 2.5.2.1.3
Füge Klammern hinzu.
Schritt 2.5.2.2
Ziehe Terme aus der Wurzel heraus.
Schritt 2.5.3
Mutltipliziere mit .
Schritt 2.5.4
Vereinige und vereinfache den Nenner.
Schritt 2.5.4.1
Mutltipliziere mit .
Schritt 2.5.4.2
Potenziere mit .
Schritt 2.5.4.3
Potenziere mit .
Schritt 2.5.4.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.5.4.5
Addiere und .
Schritt 2.5.4.6
Schreibe als um.
Schritt 2.5.4.6.1
Benutze , um als neu zu schreiben.
Schritt 2.5.4.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.5.4.6.3
Kombiniere und .
Schritt 2.5.4.6.4
Kürze den gemeinsamen Faktor von .
Schritt 2.5.4.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 2.5.4.6.4.2
Forme den Ausdruck um.
Schritt 2.5.4.6.5
Berechne den Exponenten.
Schritt 2.5.5
Vereinfache den Zähler.
Schritt 2.5.5.1
Kombiniere unter Anwendung der Produktregel für das Wurzelziehen.
Schritt 2.5.5.2
Mutltipliziere mit .
Schritt 2.6
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 2.6.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 2.6.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 2.6.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 3
Schritt 3.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 4
Schritt 4.1
Berechne bei .
Schritt 4.1.1
Ersetze durch .
Schritt 4.1.2
Vereinfache.
Schritt 4.1.2.1
Vereinfache jeden Term.
Schritt 4.1.2.1.1
Multipliziere .
Schritt 4.1.2.1.1.1
Kombiniere und .
Schritt 4.1.2.1.1.2
Mutltipliziere mit .
Schritt 4.1.2.1.2
Kombiniere und .
Schritt 4.1.2.1.3
Wende die Exponentenregel an, um den Exponenten zu verteilen.
Schritt 4.1.2.1.3.1
Wende die Produktregel auf an.
Schritt 4.1.2.1.3.2
Wende die Produktregel auf an.
Schritt 4.1.2.1.4
Vereinfache den Zähler.
Schritt 4.1.2.1.4.1
Potenziere mit .
Schritt 4.1.2.1.4.2
Schreibe als um.
Schritt 4.1.2.1.4.3
Wende die Produktregel auf an.
Schritt 4.1.2.1.4.4
Potenziere mit .
Schritt 4.1.2.1.4.5
Schreibe als um.
Schritt 4.1.2.1.4.5.1
Faktorisiere aus heraus.
Schritt 4.1.2.1.4.5.2
Schreibe als um.
Schritt 4.1.2.1.4.5.3
Faktorisiere aus.
Schritt 4.1.2.1.4.5.4
Bewege .
Schritt 4.1.2.1.4.5.5
Schreibe als um.
Schritt 4.1.2.1.4.5.6
Füge Klammern hinzu.
Schritt 4.1.2.1.4.6
Ziehe Terme aus der Wurzel heraus.
Schritt 4.1.2.1.4.7
Mutltipliziere mit .
Schritt 4.1.2.1.5
Potenziere mit .
Schritt 4.1.2.1.6
Kürze den gemeinsamen Teiler von und .
Schritt 4.1.2.1.6.1
Faktorisiere aus heraus.
Schritt 4.1.2.1.6.2
Kürze die gemeinsamen Faktoren.
Schritt 4.1.2.1.6.2.1
Faktorisiere aus heraus.
Schritt 4.1.2.1.6.2.2
Kürze den gemeinsamen Faktor.
Schritt 4.1.2.1.6.2.3
Forme den Ausdruck um.
Schritt 4.1.2.2
Stelle die Terme um.
Schritt 4.1.2.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.1.2.4
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Schritt 4.1.2.4.1
Mutltipliziere mit .
Schritt 4.1.2.4.2
Mutltipliziere mit .
Schritt 4.1.2.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.1.2.6
Vereinfache den Zähler.
Schritt 4.1.2.6.1
Faktorisiere aus heraus.
Schritt 4.1.2.6.1.1
Faktorisiere aus heraus.
Schritt 4.1.2.6.1.2
Faktorisiere aus heraus.
Schritt 4.1.2.6.1.3
Faktorisiere aus heraus.
Schritt 4.1.2.6.2
Subtrahiere von .
Schritt 4.1.2.6.3
Mutltipliziere mit .
Schritt 4.2
Berechne bei .
Schritt 4.2.1
Ersetze durch .
Schritt 4.2.2
Vereinfache.
Schritt 4.2.2.1
Vereinfache jeden Term.
Schritt 4.2.2.1.1
Multipliziere .
Schritt 4.2.2.1.1.1
Mutltipliziere mit .
Schritt 4.2.2.1.1.2
Kombiniere und .
Schritt 4.2.2.1.1.3
Mutltipliziere mit .
Schritt 4.2.2.1.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.2.2.1.3
Kombiniere und .
Schritt 4.2.2.1.4
Bringe auf die linke Seite von .
Schritt 4.2.2.1.5
Wende die Exponentenregel an, um den Exponenten zu verteilen.
Schritt 4.2.2.1.5.1
Wende die Produktregel auf an.
Schritt 4.2.2.1.5.2
Wende die Produktregel auf an.
Schritt 4.2.2.1.5.3
Wende die Produktregel auf an.
Schritt 4.2.2.1.6
Multipliziere mit durch Addieren der Exponenten.
Schritt 4.2.2.1.6.1
Bewege .
Schritt 4.2.2.1.6.2
Mutltipliziere mit .
Schritt 4.2.2.1.6.2.1
Potenziere mit .
Schritt 4.2.2.1.6.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.2.2.1.6.3
Addiere und .
Schritt 4.2.2.1.7
Potenziere mit .
Schritt 4.2.2.1.8
Mutltipliziere mit .
Schritt 4.2.2.1.9
Vereinfache den Zähler.
Schritt 4.2.2.1.9.1
Potenziere mit .
Schritt 4.2.2.1.9.2
Schreibe als um.
Schritt 4.2.2.1.9.3
Wende die Produktregel auf an.
Schritt 4.2.2.1.9.4
Potenziere mit .
Schritt 4.2.2.1.9.5
Schreibe als um.
Schritt 4.2.2.1.9.5.1
Faktorisiere aus heraus.
Schritt 4.2.2.1.9.5.2
Schreibe als um.
Schritt 4.2.2.1.9.5.3
Faktorisiere aus.
Schritt 4.2.2.1.9.5.4
Bewege .
Schritt 4.2.2.1.9.5.5
Schreibe als um.
Schritt 4.2.2.1.9.5.6
Füge Klammern hinzu.
Schritt 4.2.2.1.9.6
Ziehe Terme aus der Wurzel heraus.
Schritt 4.2.2.1.9.7
Mutltipliziere mit .
Schritt 4.2.2.1.10
Potenziere mit .
Schritt 4.2.2.1.11
Kürze den gemeinsamen Teiler von und .
Schritt 4.2.2.1.11.1
Faktorisiere aus heraus.
Schritt 4.2.2.1.11.2
Kürze die gemeinsamen Faktoren.
Schritt 4.2.2.1.11.2.1
Faktorisiere aus heraus.
Schritt 4.2.2.1.11.2.2
Kürze den gemeinsamen Faktor.
Schritt 4.2.2.1.11.2.3
Forme den Ausdruck um.
Schritt 4.2.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.2.2.3
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Schritt 4.2.2.3.1
Mutltipliziere mit .
Schritt 4.2.2.3.2
Mutltipliziere mit .
Schritt 4.2.2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.2.2.5
Vereinfache jeden Term.
Schritt 4.2.2.5.1
Vereinfache den Zähler.
Schritt 4.2.2.5.1.1
Faktorisiere aus heraus.
Schritt 4.2.2.5.1.1.1
Faktorisiere aus heraus.
Schritt 4.2.2.5.1.1.2
Faktorisiere aus heraus.
Schritt 4.2.2.5.1.1.3
Faktorisiere aus heraus.
Schritt 4.2.2.5.1.2
Mutltipliziere mit .
Schritt 4.2.2.5.1.3
Addiere und .
Schritt 4.2.2.5.1.4
Mutltipliziere mit .
Schritt 4.2.2.5.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.3
Liste all Punkte auf.
Schritt 5