Analysis Beispiele

Ermittle die kritischen Punkte f(x)=5/(3x-2)
Schritt 1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Differenziere unter Anwendung der Faktorregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.1.2
Schreibe als um.
Schritt 1.1.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.3
Ersetze alle durch .
Schritt 1.1.3
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1
Mutltipliziere mit .
Schritt 1.1.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.3.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.5
Mutltipliziere mit .
Schritt 1.1.3.6
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.3.7
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.7.1
Addiere und .
Schritt 1.1.3.7.2
Mutltipliziere mit .
Schritt 1.1.4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.4.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 1.1.4.2
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.4.2.1
Kombiniere und .
Schritt 1.1.4.2.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.2
Die erste Ableitung von nach ist .
Schritt 2
Setze die erste Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Setze die erste Ableitung gleich .
Schritt 2.2
Setze den Zähler gleich Null.
Schritt 2.3
Da , gibt es keine Lösungen.
Keine Lösung
Keine Lösung
Schritt 3
Ermittle die Werte, wo die Ableitung nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 3.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Setze gleich .
Schritt 3.2.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.2.2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.2.1
Teile jeden Ausdruck in durch .
Schritt 3.2.2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.2.2.2.1.2
Dividiere durch .
Schritt 4
Werte an jeden Wert aus, wo die Ableitung ist oder nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Ersetze durch .
Schritt 4.1.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.1.2.1.2
Forme den Ausdruck um.
Schritt 4.1.2.2
Subtrahiere von .
Schritt 4.1.2.3
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Undefiniert
Undefiniert
Undefiniert
Schritt 5
Es gibt keine Werte von im Definitionsbereich, wo die Ableitung ist oder nicht definiert ist.
Keine kritischen Punkte gefunden