Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bestimme die erste Ableitung.
Schritt 1.1.1
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 1.1.2
Differenziere.
Schritt 1.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.2.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.4
Mutltipliziere mit .
Schritt 1.1.2.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.2.6
Vereinfache den Ausdruck.
Schritt 1.1.2.6.1
Addiere und .
Schritt 1.1.2.6.2
Bringe auf die linke Seite von .
Schritt 1.1.2.7
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2.8
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.2.9
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.10
Mutltipliziere mit .
Schritt 1.1.2.11
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.2.12
Vereinfache den Ausdruck.
Schritt 1.1.2.12.1
Addiere und .
Schritt 1.1.2.12.2
Bringe auf die linke Seite von .
Schritt 1.1.3
Vereinfache.
Schritt 1.1.3.1
Wende das Distributivgesetz an.
Schritt 1.1.3.2
Wende das Distributivgesetz an.
Schritt 1.1.3.3
Vereine die Terme
Schritt 1.1.3.3.1
Mutltipliziere mit .
Schritt 1.1.3.3.2
Mutltipliziere mit .
Schritt 1.1.3.3.3
Mutltipliziere mit .
Schritt 1.1.3.3.4
Mutltipliziere mit .
Schritt 1.1.3.3.5
Addiere und .
Schritt 1.1.3.3.6
Addiere und .
Schritt 1.2
Die erste Ableitung von nach ist .
Schritt 2
Schritt 2.1
Setze die erste Ableitung gleich .
Schritt 2.2
Addiere zu beiden Seiten der Gleichung.
Schritt 2.3
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.3.1
Teile jeden Ausdruck in durch .
Schritt 2.3.2
Vereinfache die linke Seite.
Schritt 2.3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.2.1.2
Dividiere durch .
Schritt 2.3.3
Vereinfache die rechte Seite.
Schritt 2.3.3.1
Kürze den gemeinsamen Teiler von und .
Schritt 2.3.3.1.1
Faktorisiere aus heraus.
Schritt 2.3.3.1.2
Kürze die gemeinsamen Faktoren.
Schritt 2.3.3.1.2.1
Faktorisiere aus heraus.
Schritt 2.3.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.3.1.2.3
Forme den Ausdruck um.
Schritt 3
Schritt 3.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 4
Schritt 4.1
Berechne bei .
Schritt 4.1.1
Ersetze durch .
Schritt 4.1.2
Vereinfache.
Schritt 4.1.2.1
Kürze den gemeinsamen Faktor von .
Schritt 4.1.2.1.1
Faktorisiere aus heraus.
Schritt 4.1.2.1.2
Kürze den gemeinsamen Faktor.
Schritt 4.1.2.1.3
Forme den Ausdruck um.
Schritt 4.1.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.1.2.3
Kombiniere und .
Schritt 4.1.2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.1.2.5
Vereinfache den Zähler.
Schritt 4.1.2.5.1
Mutltipliziere mit .
Schritt 4.1.2.5.2
Subtrahiere von .
Schritt 4.1.2.6
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.1.2.7
Kürze den gemeinsamen Faktor von .
Schritt 4.1.2.7.1
Faktorisiere aus heraus.
Schritt 4.1.2.7.2
Kürze den gemeinsamen Faktor.
Schritt 4.1.2.7.3
Forme den Ausdruck um.
Schritt 4.1.2.8
Vereinfache den Ausdruck.
Schritt 4.1.2.8.1
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 4.1.2.8.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.1.2.8.3
Addiere und .
Schritt 4.1.2.9
Multipliziere .
Schritt 4.1.2.9.1
Mutltipliziere mit .
Schritt 4.1.2.9.2
Mutltipliziere mit .
Schritt 4.1.2.9.3
Mutltipliziere mit .
Schritt 4.2
Liste all Punkte auf.
Schritt 5