Analysis Beispiele

Ermittle die kritischen Punkte f(x)=1/(x^2-9)
Schritt 1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Schreibe als um.
Schritt 1.1.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.3
Ersetze alle durch .
Schritt 1.1.3
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.3.4
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.4.1
Addiere und .
Schritt 1.1.3.4.2
Mutltipliziere mit .
Schritt 1.1.4
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 1.1.5
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.5.1
Kombiniere und .
Schritt 1.1.5.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.1.5.3
Kombiniere und .
Schritt 1.1.5.4
Bringe auf die linke Seite von .
Schritt 1.2
Die erste Ableitung von nach ist .
Schritt 2
Setze die erste Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Setze die erste Ableitung gleich .
Schritt 2.2
Setze den Zähler gleich Null.
Schritt 2.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Teile jeden Ausdruck in durch .
Schritt 2.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.2.1.2
Dividiere durch .
Schritt 2.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.1
Dividiere durch .
Schritt 3
Ermittle die Werte, wo die Ableitung nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 3.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Faktorisiere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Schreibe als um.
Schritt 3.2.1.2
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 3.2.1.3
Wende die Produktregel auf an.
Schritt 3.2.2
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 3.2.3
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.3.1
Setze gleich .
Schritt 3.2.3.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.3.2.1
Setze gleich .
Schritt 3.2.3.2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.2.4
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.4.1
Setze gleich .
Schritt 3.2.4.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.4.2.1
Setze gleich .
Schritt 3.2.4.2.2
Addiere zu beiden Seiten der Gleichung.
Schritt 3.2.5
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 3.3
Die Gleichung ist nicht definiert, wo der Nenner gleich , das Argument einer Quadratwurzel kleiner als oder das Argument eines Logarithmus kleiner oder gleich ist.
Schritt 4
Werte an jeden Wert aus, wo die Ableitung ist oder nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Ersetze durch .
Schritt 4.1.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 4.1.2.1.2
Subtrahiere von .
Schritt 4.1.2.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.2
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Ersetze durch .
Schritt 4.2.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.1
Potenziere mit .
Schritt 4.2.2.2
Subtrahiere von .
Schritt 4.2.2.3
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Undefiniert
Undefiniert
Schritt 4.3
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Ersetze durch .
Schritt 4.3.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1
Potenziere mit .
Schritt 4.3.2.2
Subtrahiere von .
Schritt 4.3.2.3
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Undefiniert
Undefiniert
Schritt 4.4
Liste all Punkte auf.
Schritt 5