Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bestimme die erste Ableitung.
Schritt 1.1.1
Schreibe als um.
Schritt 1.1.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.1.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.3
Ersetze alle durch .
Schritt 1.1.3
Differenziere.
Schritt 1.1.3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.5
Mutltipliziere mit .
Schritt 1.1.3.6
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.3.7
Addiere und .
Schritt 1.1.4
Vereinfache.
Schritt 1.1.4.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 1.1.4.2
Stelle die Faktoren von um.
Schritt 1.1.4.3
Wende das Distributivgesetz an.
Schritt 1.1.4.4
Mutltipliziere mit .
Schritt 1.1.4.5
Mutltipliziere mit .
Schritt 1.1.4.6
Mutltipliziere mit .
Schritt 1.1.4.7
Faktorisiere aus heraus.
Schritt 1.1.4.7.1
Faktorisiere aus heraus.
Schritt 1.1.4.7.2
Faktorisiere aus heraus.
Schritt 1.1.4.7.3
Faktorisiere aus heraus.
Schritt 1.1.4.8
Faktorisiere aus heraus.
Schritt 1.1.4.9
Schreibe als um.
Schritt 1.1.4.10
Faktorisiere aus heraus.
Schritt 1.1.4.11
Schreibe als um.
Schritt 1.1.4.12
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.2
Die erste Ableitung von nach ist .
Schritt 2
Schritt 2.1
Setze die erste Ableitung gleich .
Schritt 2.2
Setze den Zähler gleich Null.
Schritt 2.3
Löse die Gleichung nach auf.
Schritt 2.3.1
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.3.1.1
Teile jeden Ausdruck in durch .
Schritt 2.3.1.2
Vereinfache die linke Seite.
Schritt 2.3.1.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.3.1.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.1.2.1.2
Dividiere durch .
Schritt 2.3.1.3
Vereinfache die rechte Seite.
Schritt 2.3.1.3.1
Dividiere durch .
Schritt 2.3.2
Addiere zu beiden Seiten der Gleichung.
Schritt 3
Schritt 3.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 4
Schritt 4.1
Berechne bei .
Schritt 4.1.1
Ersetze durch .
Schritt 4.1.2
Vereinfache den Nenner.
Schritt 4.1.2.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 4.1.2.2
Mutltipliziere mit .
Schritt 4.1.2.3
Subtrahiere von .
Schritt 4.1.2.4
Addiere und .
Schritt 4.2
Liste all Punkte auf.
Schritt 5