Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bestimme die erste Ableitung.
Schritt 1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2
Berechne .
Schritt 1.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.3
Kombiniere und .
Schritt 1.1.2.4
Mutltipliziere mit .
Schritt 1.1.2.5
Kombiniere und .
Schritt 1.1.2.6
Kürze den gemeinsamen Teiler von und .
Schritt 1.1.2.6.1
Faktorisiere aus heraus.
Schritt 1.1.2.6.2
Kürze die gemeinsamen Faktoren.
Schritt 1.1.2.6.2.1
Faktorisiere aus heraus.
Schritt 1.1.2.6.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.1.2.6.2.3
Forme den Ausdruck um.
Schritt 1.1.2.6.2.4
Dividiere durch .
Schritt 1.1.3
Berechne .
Schritt 1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.3
Mutltipliziere mit .
Schritt 1.1.4
Berechne .
Schritt 1.1.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.4.3
Mutltipliziere mit .
Schritt 1.1.5
Differenziere unter Anwendung der Konstantenregel.
Schritt 1.1.5.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.5.2
Addiere und .
Schritt 1.2
Die erste Ableitung von nach ist .
Schritt 2
Schritt 2.1
Setze die erste Ableitung gleich .
Schritt 2.2
Faktorisiere die linke Seite der Gleichung.
Schritt 2.2.1
Faktorisiere aus heraus.
Schritt 2.2.1.1
Faktorisiere aus heraus.
Schritt 2.2.1.2
Faktorisiere aus heraus.
Schritt 2.2.1.3
Faktorisiere aus heraus.
Schritt 2.2.1.4
Faktorisiere aus heraus.
Schritt 2.2.1.5
Faktorisiere aus heraus.
Schritt 2.2.2
Faktorisiere.
Schritt 2.2.2.1
Faktorisiere unter der Verwendung der AC-Methode.
Schritt 2.2.2.1.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 2.2.2.1.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 2.2.2.2
Entferne unnötige Klammern.
Schritt 2.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2.4
Setze gleich und löse nach auf.
Schritt 2.4.1
Setze gleich .
Schritt 2.4.2
Addiere zu beiden Seiten der Gleichung.
Schritt 2.5
Setze gleich und löse nach auf.
Schritt 2.5.1
Setze gleich .
Schritt 2.5.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 3
Schritt 3.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 4
Schritt 4.1
Berechne bei .
Schritt 4.1.1
Ersetze durch .
Schritt 4.1.2
Vereinfache.
Schritt 4.1.2.1
Vereinfache jeden Term.
Schritt 4.1.2.1.1
Potenziere mit .
Schritt 4.1.2.1.2
Multipliziere .
Schritt 4.1.2.1.2.1
Kombiniere und .
Schritt 4.1.2.1.2.2
Mutltipliziere mit .
Schritt 4.1.2.1.3
Potenziere mit .
Schritt 4.1.2.1.4
Mutltipliziere mit .
Schritt 4.1.2.1.5
Mutltipliziere mit .
Schritt 4.1.2.2
Ermittle den gemeinsamen Nenner.
Schritt 4.1.2.2.1
Schreibe als einen Bruch mit dem Nenner .
Schritt 4.1.2.2.2
Mutltipliziere mit .
Schritt 4.1.2.2.3
Mutltipliziere mit .
Schritt 4.1.2.2.4
Schreibe als einen Bruch mit dem Nenner .
Schritt 4.1.2.2.5
Mutltipliziere mit .
Schritt 4.1.2.2.6
Mutltipliziere mit .
Schritt 4.1.2.2.7
Schreibe als einen Bruch mit dem Nenner .
Schritt 4.1.2.2.8
Mutltipliziere mit .
Schritt 4.1.2.2.9
Mutltipliziere mit .
Schritt 4.1.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.1.2.4
Vereinfache jeden Term.
Schritt 4.1.2.4.1
Mutltipliziere mit .
Schritt 4.1.2.4.2
Mutltipliziere mit .
Schritt 4.1.2.4.3
Mutltipliziere mit .
Schritt 4.1.2.5
Vereinfache den Ausdruck.
Schritt 4.1.2.5.1
Subtrahiere von .
Schritt 4.1.2.5.2
Subtrahiere von .
Schritt 4.1.2.5.3
Addiere und .
Schritt 4.1.2.5.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.2
Berechne bei .
Schritt 4.2.1
Ersetze durch .
Schritt 4.2.2
Vereinfache.
Schritt 4.2.2.1
Vereinfache jeden Term.
Schritt 4.2.2.1.1
Potenziere mit .
Schritt 4.2.2.1.2
Multipliziere .
Schritt 4.2.2.1.2.1
Kombiniere und .
Schritt 4.2.2.1.2.2
Mutltipliziere mit .
Schritt 4.2.2.1.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.2.2.1.4
Multipliziere mit durch Addieren der Exponenten.
Schritt 4.2.2.1.4.1
Mutltipliziere mit .
Schritt 4.2.2.1.4.1.1
Potenziere mit .
Schritt 4.2.2.1.4.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.2.2.1.4.2
Addiere und .
Schritt 4.2.2.1.5
Potenziere mit .
Schritt 4.2.2.1.6
Mutltipliziere mit .
Schritt 4.2.2.2
Ermittle den gemeinsamen Nenner.
Schritt 4.2.2.2.1
Schreibe als einen Bruch mit dem Nenner .
Schritt 4.2.2.2.2
Mutltipliziere mit .
Schritt 4.2.2.2.3
Mutltipliziere mit .
Schritt 4.2.2.2.4
Schreibe als einen Bruch mit dem Nenner .
Schritt 4.2.2.2.5
Mutltipliziere mit .
Schritt 4.2.2.2.6
Mutltipliziere mit .
Schritt 4.2.2.2.7
Schreibe als einen Bruch mit dem Nenner .
Schritt 4.2.2.2.8
Mutltipliziere mit .
Schritt 4.2.2.2.9
Mutltipliziere mit .
Schritt 4.2.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.2.2.4
Vereinfache jeden Term.
Schritt 4.2.2.4.1
Mutltipliziere mit .
Schritt 4.2.2.4.2
Mutltipliziere mit .
Schritt 4.2.2.4.3
Mutltipliziere mit .
Schritt 4.2.2.5
Vereinfache durch Addieren und Subtrahieren.
Schritt 4.2.2.5.1
Subtrahiere von .
Schritt 4.2.2.5.2
Addiere und .
Schritt 4.2.2.5.3
Addiere und .
Schritt 4.3
Liste all Punkte auf.
Schritt 5