Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bestimme die erste Ableitung.
Schritt 1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2
Berechne .
Schritt 1.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.3
Mutltipliziere mit .
Schritt 1.1.3
Berechne .
Schritt 1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.3
Mutltipliziere mit .
Schritt 1.1.4
Differenziere unter Anwendung der Konstantenregel.
Schritt 1.1.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.4.2
Addiere und .
Schritt 1.2
Die erste Ableitung von nach ist .
Schritt 2
Schritt 2.1
Setze die erste Ableitung gleich .
Schritt 2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.3
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.3.1
Teile jeden Ausdruck in durch .
Schritt 2.3.2
Vereinfache die linke Seite.
Schritt 2.3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.2.1.2
Dividiere durch .
Schritt 2.3.3
Vereinfache die rechte Seite.
Schritt 2.3.3.1
Kürze den gemeinsamen Teiler von und .
Schritt 2.3.3.1.1
Faktorisiere aus heraus.
Schritt 2.3.3.1.2
Kürze die gemeinsamen Faktoren.
Schritt 2.3.3.1.2.1
Faktorisiere aus heraus.
Schritt 2.3.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.3.1.2.3
Forme den Ausdruck um.
Schritt 3
Schritt 3.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 4
Schritt 4.1
Berechne bei .
Schritt 4.1.1
Ersetze durch .
Schritt 4.1.2
Vereinfache.
Schritt 4.1.2.1
Vereinfache jeden Term.
Schritt 4.1.2.1.1
Wende die Produktregel auf an.
Schritt 4.1.2.1.2
Potenziere mit .
Schritt 4.1.2.1.3
Potenziere mit .
Schritt 4.1.2.1.4
Kürze den gemeinsamen Faktor von .
Schritt 4.1.2.1.4.1
Faktorisiere aus heraus.
Schritt 4.1.2.1.4.2
Faktorisiere aus heraus.
Schritt 4.1.2.1.4.3
Kürze den gemeinsamen Faktor.
Schritt 4.1.2.1.4.4
Forme den Ausdruck um.
Schritt 4.1.2.1.5
Schreibe als um.
Schritt 4.1.2.1.6
Multipliziere .
Schritt 4.1.2.1.6.1
Kombiniere und .
Schritt 4.1.2.1.6.2
Mutltipliziere mit .
Schritt 4.1.2.2
Kombiniere Brüche.
Schritt 4.1.2.2.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.1.2.2.2
Addiere und .
Schritt 4.1.2.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.1.2.4
Kombiniere und .
Schritt 4.1.2.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.1.2.6
Vereinfache den Zähler.
Schritt 4.1.2.6.1
Mutltipliziere mit .
Schritt 4.1.2.6.2
Addiere und .
Schritt 4.1.2.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.2
Liste all Punkte auf.
Schritt 5