Analysis Beispiele

Ermittle die kritischen Punkte f(x)=2x^3+20x^2-14x+3
Schritt 1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.3
Mutltipliziere mit .
Schritt 1.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.3
Mutltipliziere mit .
Schritt 1.1.4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.4.3
Mutltipliziere mit .
Schritt 1.1.5
Differenziere unter Anwendung der Konstantenregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.5.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.5.2
Addiere und .
Schritt 1.2
Die erste Ableitung von nach ist .
Schritt 2
Setze die erste Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Setze die erste Ableitung gleich .
Schritt 2.2
Faktorisiere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1
Faktorisiere aus heraus.
Schritt 2.2.1.2
Faktorisiere aus heraus.
Schritt 2.2.1.3
Faktorisiere aus heraus.
Schritt 2.2.1.4
Faktorisiere aus heraus.
Schritt 2.2.1.5
Faktorisiere aus heraus.
Schritt 2.2.2
Faktorisiere.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1
Faktorisiere durch Gruppieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1.1
Für ein Polynom der Form schreibe den mittleren Term als eine Summe zweier Terme um, deren Produkt gleich und deren Summe gleich ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1.1.1
Faktorisiere aus heraus.
Schritt 2.2.2.1.1.2
Schreibe um als plus
Schritt 2.2.2.1.1.3
Wende das Distributivgesetz an.
Schritt 2.2.2.1.2
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1.2.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 2.2.2.1.2.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 2.2.2.1.3
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 2.2.2.2
Entferne unnötige Klammern.
Schritt 2.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2.4
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Setze gleich .
Schritt 2.4.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.4.2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.2.1
Teile jeden Ausdruck in durch .
Schritt 2.4.2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.4.2.2.2.1.2
Dividiere durch .
Schritt 2.5
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1
Setze gleich .
Schritt 2.5.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 3
Ermittle die Werte, wo die Ableitung nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 4
Werte an jeden Wert aus, wo die Ableitung ist oder nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Ersetze durch .
Schritt 4.1.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1.1
Wende die Produktregel auf an.
Schritt 4.1.2.1.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 4.1.2.1.3
Potenziere mit .
Schritt 4.1.2.1.4
Kombiniere und .
Schritt 4.1.2.1.5
Wende die Produktregel auf an.
Schritt 4.1.2.1.6
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 4.1.2.1.7
Potenziere mit .
Schritt 4.1.2.1.8
Kombiniere und .
Schritt 4.1.2.1.9
Kombiniere und .
Schritt 4.1.2.1.10
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.1.2.2
Ermittle den gemeinsamen Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.2.1
Mutltipliziere mit .
Schritt 4.1.2.2.2
Mutltipliziere mit .
Schritt 4.1.2.2.3
Mutltipliziere mit .
Schritt 4.1.2.2.4
Mutltipliziere mit .
Schritt 4.1.2.2.5
Schreibe als einen Bruch mit dem Nenner .
Schritt 4.1.2.2.6
Mutltipliziere mit .
Schritt 4.1.2.2.7
Mutltipliziere mit .
Schritt 4.1.2.2.8
Stelle die Faktoren von um.
Schritt 4.1.2.2.9
Mutltipliziere mit .
Schritt 4.1.2.2.10
Mutltipliziere mit .
Schritt 4.1.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.1.2.4
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.4.1
Mutltipliziere mit .
Schritt 4.1.2.4.2
Mutltipliziere mit .
Schritt 4.1.2.4.3
Mutltipliziere mit .
Schritt 4.1.2.5
Vereinfache durch Addieren und Subtrahieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.5.1
Addiere und .
Schritt 4.1.2.5.2
Subtrahiere von .
Schritt 4.1.2.5.3
Addiere und .
Schritt 4.2
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Ersetze durch .
Schritt 4.2.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.1.1
Potenziere mit .
Schritt 4.2.2.1.2
Mutltipliziere mit .
Schritt 4.2.2.1.3
Potenziere mit .
Schritt 4.2.2.1.4
Mutltipliziere mit .
Schritt 4.2.2.1.5
Mutltipliziere mit .
Schritt 4.2.2.2
Vereinfache durch Addieren von Zahlen.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.2.1
Addiere und .
Schritt 4.2.2.2.2
Addiere und .
Schritt 4.2.2.2.3
Addiere und .
Schritt 4.3
Liste all Punkte auf.
Schritt 5