Analysis Beispiele

Ermittle die kritischen Punkte f(x)=x^5-10x^3-8
Schritt 1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.3
Mutltipliziere mit .
Schritt 1.1.3
Differenziere unter Anwendung der Konstantenregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.3.2
Addiere und .
Schritt 1.2
Die erste Ableitung von nach ist .
Schritt 2
Setze die erste Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Setze die erste Ableitung gleich .
Schritt 2.2
Faktorisiere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Schreibe als um.
Schritt 2.2.2
Es sei . Ersetze für alle .
Schritt 2.2.3
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.1
Faktorisiere aus heraus.
Schritt 2.2.3.2
Faktorisiere aus heraus.
Schritt 2.2.3.3
Faktorisiere aus heraus.
Schritt 2.2.4
Ersetze alle durch .
Schritt 2.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2.4
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Setze gleich .
Schritt 2.4.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 2.4.2.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.2.1
Schreibe als um.
Schritt 2.4.2.2.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 2.4.2.2.3
Plus oder Minus ist .
Schritt 2.5
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1
Setze gleich .
Schritt 2.5.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.5.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 2.5.2.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.3.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 2.5.2.3.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 2.5.2.3.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 2.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 3
Ermittle die Werte, wo die Ableitung nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 4
Werte an jeden Wert aus, wo die Ableitung ist oder nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Ersetze durch .
Schritt 4.1.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 4.1.2.1.2
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 4.1.2.1.3
Mutltipliziere mit .
Schritt 4.1.2.2
Vereinfache durch Addieren und Subtrahieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.2.1
Addiere und .
Schritt 4.1.2.2.2
Subtrahiere von .
Schritt 4.2
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Ersetze durch .
Schritt 4.2.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.1.1
Schreibe als um.
Schritt 4.2.2.1.2
Potenziere mit .
Schritt 4.2.2.1.3
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.1.3.1
Faktorisiere aus heraus.
Schritt 4.2.2.1.3.2
Schreibe als um.
Schritt 4.2.2.1.4
Ziehe Terme aus der Wurzel heraus.
Schritt 4.2.2.1.5
Schreibe als um.
Schritt 4.2.2.1.6
Potenziere mit .
Schritt 4.2.2.1.7
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.1.7.1
Faktorisiere aus heraus.
Schritt 4.2.2.1.7.2
Schreibe als um.
Schritt 4.2.2.1.8
Ziehe Terme aus der Wurzel heraus.
Schritt 4.2.2.1.9
Mutltipliziere mit .
Schritt 4.2.2.2
Subtrahiere von .
Schritt 4.3
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Ersetze durch .
Schritt 4.3.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1.1
Wende die Produktregel auf an.
Schritt 4.3.2.1.2
Potenziere mit .
Schritt 4.3.2.1.3
Schreibe als um.
Schritt 4.3.2.1.4
Potenziere mit .
Schritt 4.3.2.1.5
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1.5.1
Faktorisiere aus heraus.
Schritt 4.3.2.1.5.2
Schreibe als um.
Schritt 4.3.2.1.6
Ziehe Terme aus der Wurzel heraus.
Schritt 4.3.2.1.7
Mutltipliziere mit .
Schritt 4.3.2.1.8
Wende die Produktregel auf an.
Schritt 4.3.2.1.9
Potenziere mit .
Schritt 4.3.2.1.10
Schreibe als um.
Schritt 4.3.2.1.11
Potenziere mit .
Schritt 4.3.2.1.12
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1.12.1
Faktorisiere aus heraus.
Schritt 4.3.2.1.12.2
Schreibe als um.
Schritt 4.3.2.1.13
Ziehe Terme aus der Wurzel heraus.
Schritt 4.3.2.1.14
Mutltipliziere mit .
Schritt 4.3.2.1.15
Mutltipliziere mit .
Schritt 4.3.2.2
Addiere und .
Schritt 4.4
Liste all Punkte auf.
Schritt 5