Gib eine Aufgabe ein ...
Analysis Beispiele
,
Schritt 1
Schritt 1.1
Setze für ein.
Schritt 1.2
Löse nach auf.
Schritt 1.2.1
Entferne die Klammern.
Schritt 1.2.2
Vereinfache .
Schritt 1.2.2.1
Mutltipliziere mit .
Schritt 1.2.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.2.2.3
Kombiniere und .
Schritt 1.2.2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.2.2.5
Vereinfache den Zähler.
Schritt 1.2.2.5.1
Mutltipliziere mit .
Schritt 1.2.2.5.2
Addiere und .
Schritt 2
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Mutltipliziere mit .
Schritt 2.3
Berechne .
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Schreibe als um.
Schritt 2.3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.4
Mutltipliziere mit .
Schritt 2.4
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 2.5
Vereinfache.
Schritt 2.5.1
Vereine die Terme
Schritt 2.5.1.1
Kombiniere und .
Schritt 2.5.1.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.5.2
Stelle die Terme um.
Schritt 2.6
Bestimme die Ableitung bei .
Schritt 2.7
Vereinfache.
Schritt 2.7.1
Potenziere mit .
Schritt 2.7.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.7.3
Kombiniere und .
Schritt 2.7.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.7.5
Vereinfache den Zähler.
Schritt 2.7.5.1
Mutltipliziere mit .
Schritt 2.7.5.2
Addiere und .
Schritt 3
Schritt 3.1
Benutze die Steigung und einen gegebenen Punkt , um und in der Punkt-Steigungs-Form zu substituieren, welche von der Gleichung für die Steigung abgeleitet ist.
Schritt 3.2
Vereinfache die Gleichung und behalte die Punkt-Richtungs-Form bei.
Schritt 3.3
Löse nach auf.
Schritt 3.3.1
Vereinfache .
Schritt 3.3.1.1
Forme um.
Schritt 3.3.1.2
Vereinfache durch Addieren von Nullen.
Schritt 3.3.1.3
Wende das Distributivgesetz an.
Schritt 3.3.1.4
Kombiniere und .
Schritt 3.3.1.5
Kürze den gemeinsamen Faktor von .
Schritt 3.3.1.5.1
Faktorisiere aus heraus.
Schritt 3.3.1.5.2
Faktorisiere aus heraus.
Schritt 3.3.1.5.3
Kürze den gemeinsamen Faktor.
Schritt 3.3.1.5.4
Forme den Ausdruck um.
Schritt 3.3.1.6
Kombiniere und .
Schritt 3.3.1.7
Vereinfache den Ausdruck.
Schritt 3.3.1.7.1
Mutltipliziere mit .
Schritt 3.3.1.7.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.3.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 3.3.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.3.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.3.2.3
Addiere und .
Schritt 3.3.2.4
Kürze den gemeinsamen Teiler von und .
Schritt 3.3.2.4.1
Faktorisiere aus heraus.
Schritt 3.3.2.4.2
Kürze die gemeinsamen Faktoren.
Schritt 3.3.2.4.2.1
Faktorisiere aus heraus.
Schritt 3.3.2.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.3.2.4.2.3
Forme den Ausdruck um.
Schritt 3.3.3
Stelle die Terme um.
Schritt 4