Analysis Beispiele

x=4에서의 접선 구하기 f(x)=2x+5/x , x=4
,
Schritt 1
Find the corresponding -value to .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Setze für ein.
Schritt 1.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Entferne die Klammern.
Schritt 1.2.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Mutltipliziere mit .
Schritt 1.2.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.2.2.3
Kombiniere und .
Schritt 1.2.2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.2.2.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.5.1
Mutltipliziere mit .
Schritt 1.2.2.5.2
Addiere und .
Schritt 2
Finde die erste Ableitung und werte sie bei und aus, um die Steigung der Tangentenlinie zu finden.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Mutltipliziere mit .
Schritt 2.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Schreibe als um.
Schritt 2.3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.4
Mutltipliziere mit .
Schritt 2.4
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 2.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1.1
Kombiniere und .
Schritt 2.5.1.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.5.2
Stelle die Terme um.
Schritt 2.6
Bestimme die Ableitung bei .
Schritt 2.7
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.7.1
Potenziere mit .
Schritt 2.7.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.7.3
Kombiniere und .
Schritt 2.7.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.7.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.7.5.1
Mutltipliziere mit .
Schritt 2.7.5.2
Addiere und .
Schritt 3
Steigung und Punktwerte in die Punkt-Steigungs-Formel einfügen und für lösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Benutze die Steigung und einen gegebenen Punkt , um und in der Punkt-Steigungs-Form zu substituieren, welche von der Gleichung für die Steigung abgeleitet ist.
Schritt 3.2
Vereinfache die Gleichung und behalte die Punkt-Richtungs-Form bei.
Schritt 3.3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.1
Forme um.
Schritt 3.3.1.2
Vereinfache durch Addieren von Nullen.
Schritt 3.3.1.3
Wende das Distributivgesetz an.
Schritt 3.3.1.4
Kombiniere und .
Schritt 3.3.1.5
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.5.1
Faktorisiere aus heraus.
Schritt 3.3.1.5.2
Faktorisiere aus heraus.
Schritt 3.3.1.5.3
Kürze den gemeinsamen Faktor.
Schritt 3.3.1.5.4
Forme den Ausdruck um.
Schritt 3.3.1.6
Kombiniere und .
Schritt 3.3.1.7
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.7.1
Mutltipliziere mit .
Schritt 3.3.1.7.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.3.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.3.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.3.2.3
Addiere und .
Schritt 3.3.2.4
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.4.1
Faktorisiere aus heraus.
Schritt 3.3.2.4.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.4.2.1
Faktorisiere aus heraus.
Schritt 3.3.2.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.3.2.4.2.3
Forme den Ausdruck um.
Schritt 3.3.3
Stelle die Terme um.
Schritt 4