Analysis Beispiele

x=4에서의 접선 구하기 g(x)=(2x-3)/(7x+4) , x=4
,
Schritt 1
Find the corresponding -value to .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Setze für ein.
Schritt 1.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Entferne die Klammern.
Schritt 1.2.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1.1
Mutltipliziere mit .
Schritt 1.2.2.1.2
Subtrahiere von .
Schritt 1.2.2.2
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.2.1
Mutltipliziere mit .
Schritt 1.2.2.2.2
Addiere und .
Schritt 2
Finde die erste Ableitung und werte sie bei und aus, um die Steigung der Tangentenlinie zu finden.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 2.2
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.4
Mutltipliziere mit .
Schritt 2.2.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.2.6
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.6.1
Addiere und .
Schritt 2.2.6.2
Bringe auf die linke Seite von .
Schritt 2.2.7
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2.8
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.9
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.10
Mutltipliziere mit .
Schritt 2.2.11
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.2.12
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.12.1
Addiere und .
Schritt 2.2.12.2
Mutltipliziere mit .
Schritt 2.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Wende das Distributivgesetz an.
Schritt 2.3.2
Wende das Distributivgesetz an.
Schritt 2.3.3
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.1.1
Mutltipliziere mit .
Schritt 2.3.3.1.2
Mutltipliziere mit .
Schritt 2.3.3.1.3
Mutltipliziere mit .
Schritt 2.3.3.1.4
Mutltipliziere mit .
Schritt 2.3.3.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.2.1
Subtrahiere von .
Schritt 2.3.3.2.2
Addiere und .
Schritt 2.3.3.3
Addiere und .
Schritt 2.4
Bestimme die Ableitung bei .
Schritt 2.5
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1
Mutltipliziere mit .
Schritt 2.5.2
Addiere und .
Schritt 2.5.3
Potenziere mit .
Schritt 3
Steigung und Punktwerte in die Punkt-Steigungs-Formel einfügen und für lösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Benutze die Steigung und einen gegebenen Punkt , um und in der Punkt-Steigungs-Form zu substituieren, welche von der Gleichung für die Steigung abgeleitet ist.
Schritt 3.2
Vereinfache die Gleichung und behalte die Punkt-Richtungs-Form bei.
Schritt 3.3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.1
Forme um.
Schritt 3.3.1.2
Vereinfache durch Addieren von Nullen.
Schritt 3.3.1.3
Wende das Distributivgesetz an.
Schritt 3.3.1.4
Kombiniere und .
Schritt 3.3.1.5
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.5.1
Faktorisiere aus heraus.
Schritt 3.3.1.5.2
Faktorisiere aus heraus.
Schritt 3.3.1.5.3
Kürze den gemeinsamen Faktor.
Schritt 3.3.1.5.4
Forme den Ausdruck um.
Schritt 3.3.1.6
Kombiniere und .
Schritt 3.3.1.7
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.7.1
Mutltipliziere mit .
Schritt 3.3.1.7.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.3.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.3.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.3.2.3
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.3.1
Mutltipliziere mit .
Schritt 3.3.2.3.2
Mutltipliziere mit .
Schritt 3.3.2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.3.2.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.5.1
Mutltipliziere mit .
Schritt 3.3.2.5.2
Addiere und .
Schritt 3.3.3
Stelle die Terme um.
Schritt 4