Gib eine Aufgabe ein ...
Analysis Beispiele
,
Schritt 1
Schritt 1.1
Setze für ein.
Schritt 1.2
Löse nach auf.
Schritt 1.2.1
Entferne die Klammern.
Schritt 1.2.2
Vereinfache .
Schritt 1.2.2.1
Vereinfache den Zähler.
Schritt 1.2.2.1.1
Mutltipliziere mit .
Schritt 1.2.2.1.2
Subtrahiere von .
Schritt 1.2.2.2
Vereinfache den Nenner.
Schritt 1.2.2.2.1
Mutltipliziere mit .
Schritt 1.2.2.2.2
Addiere und .
Schritt 2
Schritt 2.1
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 2.2
Differenziere.
Schritt 2.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.4
Mutltipliziere mit .
Schritt 2.2.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.2.6
Vereinfache den Ausdruck.
Schritt 2.2.6.1
Addiere und .
Schritt 2.2.6.2
Bringe auf die linke Seite von .
Schritt 2.2.7
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2.8
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.9
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.10
Mutltipliziere mit .
Schritt 2.2.11
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.2.12
Vereinfache den Ausdruck.
Schritt 2.2.12.1
Addiere und .
Schritt 2.2.12.2
Mutltipliziere mit .
Schritt 2.3
Vereinfache.
Schritt 2.3.1
Wende das Distributivgesetz an.
Schritt 2.3.2
Wende das Distributivgesetz an.
Schritt 2.3.3
Vereinfache den Zähler.
Schritt 2.3.3.1
Vereinfache jeden Term.
Schritt 2.3.3.1.1
Mutltipliziere mit .
Schritt 2.3.3.1.2
Mutltipliziere mit .
Schritt 2.3.3.1.3
Mutltipliziere mit .
Schritt 2.3.3.1.4
Mutltipliziere mit .
Schritt 2.3.3.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 2.3.3.2.1
Subtrahiere von .
Schritt 2.3.3.2.2
Addiere und .
Schritt 2.3.3.3
Addiere und .
Schritt 2.4
Bestimme die Ableitung bei .
Schritt 2.5
Vereinfache den Nenner.
Schritt 2.5.1
Mutltipliziere mit .
Schritt 2.5.2
Addiere und .
Schritt 2.5.3
Potenziere mit .
Schritt 3
Schritt 3.1
Benutze die Steigung und einen gegebenen Punkt , um und in der Punkt-Steigungs-Form zu substituieren, welche von der Gleichung für die Steigung abgeleitet ist.
Schritt 3.2
Vereinfache die Gleichung und behalte die Punkt-Richtungs-Form bei.
Schritt 3.3
Löse nach auf.
Schritt 3.3.1
Vereinfache .
Schritt 3.3.1.1
Forme um.
Schritt 3.3.1.2
Vereinfache durch Addieren von Nullen.
Schritt 3.3.1.3
Wende das Distributivgesetz an.
Schritt 3.3.1.4
Kombiniere und .
Schritt 3.3.1.5
Kürze den gemeinsamen Faktor von .
Schritt 3.3.1.5.1
Faktorisiere aus heraus.
Schritt 3.3.1.5.2
Faktorisiere aus heraus.
Schritt 3.3.1.5.3
Kürze den gemeinsamen Faktor.
Schritt 3.3.1.5.4
Forme den Ausdruck um.
Schritt 3.3.1.6
Kombiniere und .
Schritt 3.3.1.7
Vereinfache den Ausdruck.
Schritt 3.3.1.7.1
Mutltipliziere mit .
Schritt 3.3.1.7.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.3.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 3.3.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.3.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.3.2.3
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Schritt 3.3.2.3.1
Mutltipliziere mit .
Schritt 3.3.2.3.2
Mutltipliziere mit .
Schritt 3.3.2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.3.2.5
Vereinfache den Zähler.
Schritt 3.3.2.5.1
Mutltipliziere mit .
Schritt 3.3.2.5.2
Addiere und .
Schritt 3.3.3
Stelle die Terme um.
Schritt 4