Analysis Beispiele

Löse graphisch 0=(x-4)(x+2)^2
Schritt 1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Schreibe als um.
Schritt 1.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Wende das Distributivgesetz an.
Schritt 1.2.2
Wende das Distributivgesetz an.
Schritt 1.2.3
Wende das Distributivgesetz an.
Schritt 1.3
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1.1
Mutltipliziere mit .
Schritt 1.3.1.2
Bringe auf die linke Seite von .
Schritt 1.3.1.3
Mutltipliziere mit .
Schritt 1.3.2
Addiere und .
Schritt 1.4
Multipliziere aus durch Multiplizieren jedes Terms des ersten Ausdrucks mit jedem Term des zweiten Ausdrucks.
Schritt 1.5
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1.1
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1.1.1
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1.1.1.1
Potenziere mit .
Schritt 1.5.1.1.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.5.1.1.2
Addiere und .
Schritt 1.5.1.2
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 1.5.1.3
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1.3.1
Bewege .
Schritt 1.5.1.3.2
Mutltipliziere mit .
Schritt 1.5.1.4
Bringe auf die linke Seite von .
Schritt 1.5.1.5
Mutltipliziere mit .
Schritt 1.5.1.6
Mutltipliziere mit .
Schritt 1.5.2
Vereinfache durch Addieren von Termen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.2.1
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.2.1.1
Subtrahiere von .
Schritt 1.5.2.1.2
Addiere und .
Schritt 1.5.2.2
Subtrahiere von .
Schritt 2
Stelle jede Seite der Gleichung graphisch dar. Die Lösung ist der x-Wert des Schnittpunktes.
Schritt 3