Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Setze den Radikanden in größer als oder gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 1.2
Löse nach auf.
Schritt 1.2.1
Subtrahiere von beiden Seiten der Ungleichung.
Schritt 1.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 1.2.2.1
Teile jeden Term in durch . Wenn beide Seiten der Ungleichung mit einen negativen Wert multipliziert oder dividiert werden, kehre die Vorzeichen der Ungleichung um.
Schritt 1.2.2.2
Vereinfache die linke Seite.
Schritt 1.2.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 1.2.2.2.2
Dividiere durch .
Schritt 1.2.2.3
Vereinfache die rechte Seite.
Schritt 1.2.2.3.1
Dividiere durch .
Schritt 1.2.3
Ziehe die angegebene Wurzel auf beiden Seiten der Ungleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 1.2.4
Vereinfache die Gleichung.
Schritt 1.2.4.1
Vereinfache die linke Seite.
Schritt 1.2.4.1.1
Ziehe Terme aus der Wurzel heraus.
Schritt 1.2.4.2
Vereinfache die rechte Seite.
Schritt 1.2.4.2.1
Jede Wurzel von ist .
Schritt 1.2.5
Schreibe als abschnittsweise Funktion.
Schritt 1.2.5.1
Um das Intervall für den ersten Teil zu bestimmen, ermittele, wo das Innere des Absolutwertes nicht negativ ist.
Schritt 1.2.5.2
Entferne den Absolutwert in dem Teil, in dem nicht negativ ist.
Schritt 1.2.5.3
Um das Intervall für den zweiten Teil zu bestimmen, ermittele, wo das Innere des Absolutwertes negativ ist.
Schritt 1.2.5.4
Entferne den Absolutwert und multipliziere mit in dem Teil, in dem negativ ist.
Schritt 1.2.5.5
Schreibe als eine abschnittsweise Funktion.
Schritt 1.2.6
Bestimme die Schnittmenge von und .
Schritt 1.2.7
Löse , wenn ergibt.
Schritt 1.2.7.1
Teile jeden Ausdruck in durch und vereinfache.
Schritt 1.2.7.1.1
Teile jeden Term in durch . Wenn beide Seiten der Ungleichung mit einen negativen Wert multipliziert oder dividiert werden, kehre die Vorzeichen der Ungleichung um.
Schritt 1.2.7.1.2
Vereinfache die linke Seite.
Schritt 1.2.7.1.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 1.2.7.1.2.2
Dividiere durch .
Schritt 1.2.7.1.3
Vereinfache die rechte Seite.
Schritt 1.2.7.1.3.1
Dividiere durch .
Schritt 1.2.7.2
Bestimme die Schnittmenge von und .
Schritt 1.2.8
Ermittele die Vereinigungsmenge der Lösungen.
Schritt 1.3
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 2
Der Ausdruck ist stetig.
Stetig
Schritt 3