Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Schritt 1.1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 1.1.2
Berechne den Grenzwert des Zählers.
Schritt 1.1.2.1
Berechne den Grenzwert.
Schritt 1.1.2.1.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.1.2.1.2
Bringe den Grenzwert in die trigonometrische Funktion, da der Tangens stetig ist.
Schritt 1.1.2.1.3
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 1.1.2.1.4
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.1.2.1.5
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 1.1.2.1.6
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 1.1.2.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.2.3
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 1.1.2.3.1
Addiere und .
Schritt 1.1.2.3.2
Subtrahiere von .
Schritt 1.1.3
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 1.3
Bestimme die Ableitung des Zählers und des Nenners.
Schritt 1.3.1
Differenziere den Zähler und Nenner.
Schritt 1.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3.3
Berechne .
Schritt 1.3.3.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.3.3.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.3.3.1.2
Die Ableitung von nach ist .
Schritt 1.3.3.1.3
Ersetze alle durch .
Schritt 1.3.3.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.3.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3.3.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.3.3.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3.6
Addiere und .
Schritt 1.3.3.7
Mutltipliziere mit .
Schritt 1.3.3.8
Bringe auf die linke Seite von .
Schritt 1.3.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.3.5
Vereinfache.
Schritt 1.3.5.1
Wende das Distributivgesetz an.
Schritt 1.3.5.2
Addiere und .
Schritt 1.3.5.3
Schreibe mithilfe von Sinus und Kosinus um.
Schritt 1.3.5.4
Wende die Produktregel auf an.
Schritt 1.3.5.5
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 1.3.5.6
Kombiniere und .
Schritt 1.3.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 1.5
Mutltipliziere mit .
Schritt 2
Schritt 2.1
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 2.2
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.3
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 2.4
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 2.5
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Schritt 2.6
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.7
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 2.8
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 3
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 4
Schritt 4.1
Schreibe als um.
Schritt 4.2
Schreibe als um.
Schritt 4.3
Wandle von nach um.
Schritt 4.4
Mutltipliziere mit .
Schritt 4.5
Addiere und .