Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Differenziere.
Schritt 1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.2
Berechne .
Schritt 1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.3
Mutltipliziere mit .
Schritt 1.3
Subtrahiere von .
Schritt 2
Schritt 2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3
Mutltipliziere mit .
Schritt 3
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 4
Schritt 4.1
Bestimme die erste Ableitung.
Schritt 4.1.1
Differenziere.
Schritt 4.1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.1.1.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.1.2
Berechne .
Schritt 4.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.2.3
Mutltipliziere mit .
Schritt 4.1.3
Subtrahiere von .
Schritt 4.2
Die erste Ableitung von nach ist .
Schritt 5
Schritt 5.1
Setze die erste Ableitung gleich .
Schritt 5.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 5.2.1
Teile jeden Ausdruck in durch .
Schritt 5.2.2
Vereinfache die linke Seite.
Schritt 5.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 5.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.2.1.2
Forme den Ausdruck um.
Schritt 5.2.2.2
Kürze den gemeinsamen Faktor von .
Schritt 5.2.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.2.2.2
Dividiere durch .
Schritt 5.2.3
Vereinfache die rechte Seite.
Schritt 5.2.3.1
Kürze den gemeinsamen Teiler von und .
Schritt 5.2.3.1.1
Faktorisiere aus heraus.
Schritt 5.2.3.1.2
Kürze die gemeinsamen Faktoren.
Schritt 5.2.3.1.2.1
Faktorisiere aus heraus.
Schritt 5.2.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.2.3.1.2.3
Forme den Ausdruck um.
Schritt 5.2.3.2
Dividiere durch .
Schritt 5.3
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 5.4
Vereinfache .
Schritt 5.4.1
Schreibe als um.
Schritt 5.4.2
Ziehe Terme von unter der Wurzel heraus unter der Annahme reeller Zahlen.
Schritt 6
Schritt 6.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 7
Kritische Punkte zum auswerten.
Schritt 8
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 9
Schritt 9.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 9.2
Multipliziere .
Schritt 9.2.1
Mutltipliziere mit .
Schritt 9.2.2
Mutltipliziere mit .
Schritt 10
Da der erste Ableitungstest nicht erfolgreich war, gibt es kein lokales Extremum.
Keine lokalen Extrema
Schritt 11