Analysis Beispiele

Finde die lokalen Maxima und Minima f(x)=8cos(x)^2-16sin(x)
Schritt 1
Ermittle die erste Ableitung der Funktion.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.2.3
Ersetze alle durch .
Schritt 1.2.3
Die Ableitung von nach ist .
Schritt 1.2.4
Mutltipliziere mit .
Schritt 1.2.5
Mutltipliziere mit .
Schritt 1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Die Ableitung von nach ist .
Schritt 2
Ermittle die zweite Ableitung der Funktion.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2.2.3
Die Ableitung von nach ist .
Schritt 2.2.4
Die Ableitung von nach ist .
Schritt 2.2.5
Potenziere mit .
Schritt 2.2.6
Potenziere mit .
Schritt 2.2.7
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.2.8
Addiere und .
Schritt 2.2.9
Potenziere mit .
Schritt 2.2.10
Potenziere mit .
Schritt 2.2.11
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.2.12
Addiere und .
Schritt 2.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Die Ableitung von nach ist .
Schritt 2.3.3
Mutltipliziere mit .
Schritt 2.4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Wende das Distributivgesetz an.
Schritt 2.4.2
Mutltipliziere mit .
Schritt 3
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 4
Faktorisiere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Faktorisiere aus heraus.
Schritt 4.1.2
Faktorisiere aus heraus.
Schritt 4.1.3
Faktorisiere aus heraus.
Schritt 4.2
Schreibe als um.
Schritt 5
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 6
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Setze gleich .
Schritt 6.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Wende den inversen Kosinus auf beide Seiten der Gleichung an, um aus dem Kosinus herauszuziehen.
Schritt 6.2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.2.1
Der genau Wert von ist .
Schritt 6.2.3
Die Kosinusfunktion ist positiv im ersten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu finden.
Schritt 6.2.4
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.4.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 6.2.4.2
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.4.2.1
Kombiniere und .
Schritt 6.2.4.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6.2.4.3
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.4.3.1
Mutltipliziere mit .
Schritt 6.2.4.3.2
Subtrahiere von .
Schritt 6.2.5
Die Lösung der Gleichung .
Schritt 7
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Setze gleich .
Schritt 7.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 7.2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.2.1
Teile jeden Ausdruck in durch .
Schritt 7.2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 7.2.2.2.2
Dividiere durch .
Schritt 7.2.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.2.3.1
Dividiere durch .
Schritt 7.2.3
Wende den inversen Sinus auf beide Seiten der Gleichung an, um aus dem Sinus herauszuziehen.
Schritt 7.2.4
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.4.1
Der genau Wert von ist .
Schritt 7.2.5
Die Sinusfunktion ist negativ im dritten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere die Lösung von , um einen Referenzwinkel zu ermitteln. Addiere als nächstes diesen Referenzwinkel zu , um die Lösung im dritten Quadranten zu finden.
Schritt 7.2.6
Vereinfache den Ausdruck, um die zweite Lösung zu ermitteln.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.6.1
Subtrahiere von .
Schritt 7.2.6.2
Der resultierende Winkel von ist positiv, kleiner als und gleich .
Schritt 7.2.7
Die Lösung der Gleichung .
Schritt 8
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 9
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 10
Berechne die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1.1
Der genau Wert von ist .
Schritt 10.1.2
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 10.1.3
Mutltipliziere mit .
Schritt 10.1.4
Der genau Wert von ist .
Schritt 10.1.5
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 10.1.6
Mutltipliziere mit .
Schritt 10.1.7
Der genau Wert von ist .
Schritt 10.1.8
Mutltipliziere mit .
Schritt 10.2
Vereinfache durch Addieren von Zahlen.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.2.1
Addiere und .
Schritt 10.2.2
Addiere und .
Schritt 11
ist ein lokales Minimum, weil der Wert der zweiten Ableitung positiv ist. Dies wird auch der Prüfung der zweiten Ableitung genannt.
ist ein lokales Minimum
Schritt 12
Ermittele den y-Wert, wenn .
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 12.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.2.1.1
Der genau Wert von ist .
Schritt 12.2.1.2
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 12.2.1.3
Mutltipliziere mit .
Schritt 12.2.1.4
Der genau Wert von ist .
Schritt 12.2.1.5
Mutltipliziere mit .
Schritt 12.2.2
Subtrahiere von .
Schritt 12.2.3
Die endgültige Lösung ist .
Schritt 13
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 14
Berechne die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 14.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 14.1.1
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest.
Schritt 14.1.2
Der genau Wert von ist .
Schritt 14.1.3
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 14.1.4
Mutltipliziere mit .
Schritt 14.1.5
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Sinus im vierten Quadranten negativ ist.
Schritt 14.1.6
Der genau Wert von ist .
Schritt 14.1.7
Mutltipliziere mit .
Schritt 14.1.8
Potenziere mit .
Schritt 14.1.9
Mutltipliziere mit .
Schritt 14.1.10
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Sinus im vierten Quadranten negativ ist.
Schritt 14.1.11
Der genau Wert von ist .
Schritt 14.1.12
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 14.1.12.1
Mutltipliziere mit .
Schritt 14.1.12.2
Mutltipliziere mit .
Schritt 14.2
Vereinfache durch Addieren und Subtrahieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 14.2.1
Addiere und .
Schritt 14.2.2
Subtrahiere von .
Schritt 15
Da es mindestens einen Punkt mit oder eine nicht definierte zweite Ableitung gibt, wende den ersten Ableitungstest an.
Tippen, um mehr Schritte zu sehen ...
Schritt 15.1
Teile in separate Intervalle um die -Werte herum auf, die die erste Ableitung zu oder nicht definiert machen.
Schritt 15.2
Setze eine beliebige Zahl, wie , aus dem Intervall in die erste Ableitung ein, um zu überprüfen, ob das Ergebnis negativ oder positiv ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 15.2.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 15.2.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 15.2.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 15.2.2.1.1
Berechne .
Schritt 15.2.2.1.2
Mutltipliziere mit .
Schritt 15.2.2.1.3
Berechne .
Schritt 15.2.2.1.4
Mutltipliziere mit .
Schritt 15.2.2.1.5
Berechne .
Schritt 15.2.2.1.6
Mutltipliziere mit .
Schritt 15.2.2.2
Addiere und .
Schritt 15.2.2.3
Die endgültige Lösung ist .
Schritt 15.3
Setze eine beliebige Zahl, wie , aus dem Intervall in die erste Ableitung ein, um zu überprüfen, ob das Ergebnis negativ oder positiv ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 15.3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 15.3.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 15.3.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 15.3.2.1.1
Der genau Wert von ist .
Schritt 15.3.2.1.2
Mutltipliziere mit .
Schritt 15.3.2.1.3
Der genau Wert von ist .
Schritt 15.3.2.1.4
Mutltipliziere mit .
Schritt 15.3.2.1.5
Der genau Wert von ist .
Schritt 15.3.2.1.6
Mutltipliziere mit .
Schritt 15.3.2.2
Subtrahiere von .
Schritt 15.3.2.3
Die endgültige Lösung ist .
Schritt 15.4
Setze eine beliebige Zahl, wie , aus dem Intervall in die erste Ableitung ein, um zu überprüfen, ob das Ergebnis negativ oder positiv ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 15.4.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 15.4.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 15.4.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 15.4.2.1.1
Berechne .
Schritt 15.4.2.1.2
Mutltipliziere mit .
Schritt 15.4.2.1.3
Berechne .
Schritt 15.4.2.1.4
Mutltipliziere mit .
Schritt 15.4.2.1.5
Berechne .
Schritt 15.4.2.1.6
Mutltipliziere mit .
Schritt 15.4.2.2
Addiere und .
Schritt 15.4.2.3
Die endgültige Lösung ist .
Schritt 15.5
Setze eine beliebige Zahl, wie , aus dem Intervall in die erste Ableitung ein, um zu überprüfen, ob das Ergebnis negativ oder positiv ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 15.5.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 15.5.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 15.5.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 15.5.2.1.1
Berechne .
Schritt 15.5.2.1.2
Mutltipliziere mit .
Schritt 15.5.2.1.3
Berechne .
Schritt 15.5.2.1.4
Mutltipliziere mit .
Schritt 15.5.2.1.5
Berechne .
Schritt 15.5.2.1.6
Mutltipliziere mit .
Schritt 15.5.2.2
Subtrahiere von .
Schritt 15.5.2.3
Die endgültige Lösung ist .
Schritt 15.6
Da die erste Ableitung um herum das Vorzeichen von positiv zu negativ gewechselt hat, ist ein lokales Maximum.
ist ein lokales Maximum
Schritt 15.7
Da die erste Ableitung um herum das Vorzeichen von negativ zu positiv gewechselt hat, ist ein lokales Minimum.
ist ein lokales Minimum
Schritt 15.8
Da die erste Ableitung um herum das Vorzeichen von positiv zu negativ gewechselt hat, ist ein lokales Maximum.
ist ein lokales Maximum
Schritt 15.9
Dies sind die lokalen Extrema für .
ist ein lokales Maximum
ist ein lokales Minimum
ist ein lokales Maximum
ist ein lokales Maximum
ist ein lokales Minimum
ist ein lokales Maximum
Schritt 16