Analysis Beispiele

Finde die lokalen Maxima und Minima f(x)=x^4+4/x
Schritt 1
Ermittle die erste Ableitung der Funktion.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2
Schreibe als um.
Schritt 1.2.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.4
Mutltipliziere mit .
Schritt 1.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 1.3.2
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.2.1
Kombiniere und .
Schritt 1.3.2.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 2
Ermittle die zweite Ableitung der Funktion.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Mutltipliziere mit .
Schritt 2.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Schreibe als um.
Schritt 2.3.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3.3
Ersetze alle durch .
Schritt 2.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.5
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.5.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.3.5.2
Mutltipliziere mit .
Schritt 2.3.6
Mutltipliziere mit .
Schritt 2.3.7
Potenziere mit .
Schritt 2.3.8
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.3.9
Subtrahiere von .
Schritt 2.3.10
Mutltipliziere mit .
Schritt 2.4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 2.4.2
Kombiniere und .
Schritt 3
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 4
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.1.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.2.2
Schreibe als um.
Schritt 4.1.2.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.2.4
Mutltipliziere mit .
Schritt 4.1.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.3.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 4.1.3.2
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.3.2.1
Kombiniere und .
Schritt 4.1.3.2.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.2
Die erste Ableitung von nach ist .
Schritt 5
Setze die erste Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Setze die erste Ableitung gleich .
Schritt 5.2
Finde den Hauptnenner der Terme in der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 5.2.2
Das kleinste gemeinsame Vielfache eines beliebigen Ausdrucks ist der Ausdruck.
Schritt 5.3
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Multipliziere jeden Term in mit .
Schritt 5.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.2.1.1
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.2.1.1.1
Bewege .
Schritt 5.3.2.1.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.3.2.1.1.3
Addiere und .
Schritt 5.3.2.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.2.1.2.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 5.3.2.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.3.2.1.2.3
Forme den Ausdruck um.
Schritt 5.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.1
Mutltipliziere mit .
Schritt 5.4
Löse die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.1
Addiere zu beiden Seiten der Gleichung.
Schritt 5.4.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.2.1
Teile jeden Ausdruck in durch .
Schritt 5.4.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.4.2.2.1.2
Dividiere durch .
Schritt 5.4.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.2.3.1
Dividiere durch .
Schritt 5.4.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 5.4.4
Jede Wurzel von ist .
Schritt 6
Ermittle die Werte, wo die Ableitung nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 6.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 6.2.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.2.1
Schreibe als um.
Schritt 6.2.2.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 6.2.2.3
Plus oder Minus ist .
Schritt 7
Kritische Punkte zum auswerten.
Schritt 8
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 9
Berechne die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 9.1.2
Mutltipliziere mit .
Schritt 9.1.3
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 9.1.4
Dividiere durch .
Schritt 9.2
Addiere und .
Schritt 10
ist ein lokales Minimum, weil der Wert der zweiten Ableitung positiv ist. Dies wird auch der Prüfung der zweiten Ableitung genannt.
ist ein lokales Minimum
Schritt 11
Ermittele den y-Wert, wenn .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 11.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.1.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 11.2.1.2
Dividiere durch .
Schritt 11.2.2
Addiere und .
Schritt 11.2.3
Die endgültige Lösung ist .
Schritt 12
Dies sind die lokalen Extrema für .
ist ein lokales Minimum
Schritt 13