Analysis Beispiele

Finde die lokalen Maxima und Minima f(x)=1-x^(2/3)
Schritt 1
Ermittle die erste Ableitung der Funktion.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.2.4
Kombiniere und .
Schritt 1.2.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.2.6
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.6.1
Mutltipliziere mit .
Schritt 1.2.6.2
Subtrahiere von .
Schritt 1.2.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.2.8
Kombiniere und .
Schritt 1.2.9
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 1.3
Subtrahiere von .
Schritt 2
Ermittle die zweite Ableitung der Funktion.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2
Wende die grundlegenden Potenzregeln an.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Schreibe als um.
Schritt 2.2.2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.2.2.2
Kombiniere und .
Schritt 2.2.2.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.4
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.5
Kombiniere und .
Schritt 2.6
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.7
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.7.1
Mutltipliziere mit .
Schritt 2.7.2
Subtrahiere von .
Schritt 2.8
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.9
Kombiniere und .
Schritt 2.10
Multipliziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.10.1
Mutltipliziere mit .
Schritt 2.10.2
Mutltipliziere mit .
Schritt 2.11
Mutltipliziere mit .
Schritt 2.12
Multipliziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.12.1
Mutltipliziere mit .
Schritt 2.12.2
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 3
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 4
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.1.1.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.2.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.1.2.4
Kombiniere und .
Schritt 4.1.2.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.1.2.6
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.6.1
Mutltipliziere mit .
Schritt 4.1.2.6.2
Subtrahiere von .
Schritt 4.1.2.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.1.2.8
Kombiniere und .
Schritt 4.1.2.9
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 4.1.3
Subtrahiere von .
Schritt 4.2
Die erste Ableitung von nach ist .
Schritt 5
Setze die erste Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Setze die erste Ableitung gleich .
Schritt 5.2
Setze den Zähler gleich Null.
Schritt 5.3
Da , gibt es keine Lösungen.
Keine Lösung
Keine Lösung
Schritt 6
Ermittle die Werte, wo die Ableitung nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Wandel Ausdrücke mit gebrochenen Exponenten in Wurzeln um.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1
Wende die Regel an, um die Potenz als Wurzel umzuschreiben.
Schritt 6.1.2
Alles, was auf angehoben wird, ist die Basis selbst.
Schritt 6.2
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 6.3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1
Um die Wurzel auf der linken Seite der Gleichung zu entfernen, erhebe beide Seiten der Gleichung zur dritten Potenz.
Schritt 6.3.2
Vereinfache jede Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.1
Benutze , um als neu zu schreiben.
Schritt 6.3.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.2.1.1
Wende die Produktregel auf an.
Schritt 6.3.2.2.1.2
Potenziere mit .
Schritt 6.3.2.2.1.3
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.2.1.3.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 6.3.2.2.1.3.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.2.1.3.2.1
Kürze den gemeinsamen Faktor.
Schritt 6.3.2.2.1.3.2.2
Forme den Ausdruck um.
Schritt 6.3.2.2.1.4
Vereinfache.
Schritt 6.3.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.3.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 6.3.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.3.1
Teile jeden Ausdruck in durch .
Schritt 6.3.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 6.3.3.2.1.2
Dividiere durch .
Schritt 6.3.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.3.3.1
Dividiere durch .
Schritt 7
Kritische Punkte zum auswerten.
Schritt 8
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 9
Berechne die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1.1
Schreibe als um.
Schritt 9.1.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 9.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.1
Kürze den gemeinsamen Faktor.
Schritt 9.2.2
Forme den Ausdruck um.
Schritt 9.3
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.3.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 9.3.2
Mutltipliziere mit .
Schritt 9.3.3
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 9.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Undefiniert
Schritt 10
Da es mindestens einen Punkt mit oder eine nicht definierte zweite Ableitung gibt, wende den ersten Ableitungstest an.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Teile in separate Intervalle um die -Werte herum auf, die die erste Ableitung zu oder nicht definiert machen.
Schritt 10.2
Setze eine beliebige Zahl, wie , aus dem Intervall in die erste Ableitung ein, um zu überprüfen, ob das Ergebnis negativ oder positiv ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.2.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 10.2.2
Die endgültige Lösung ist .
Schritt 10.3
Setze eine beliebige Zahl, wie , aus dem Intervall in die erste Ableitung ein, um zu überprüfen, ob das Ergebnis negativ oder positiv ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 10.3.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.3.2.1
Bringe in den Zähler mithilfe der Regel des negativen Exponenten .
Schritt 10.3.2.2
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.3.2.2.1
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 10.3.2.2.1.1
Potenziere mit .
Schritt 10.3.2.2.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 10.3.2.2.2
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 10.3.2.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 10.3.2.2.4
Subtrahiere von .
Schritt 10.3.2.3
Die endgültige Lösung ist .
Schritt 10.4
Da die erste Ableitung um herum das Vorzeichen von positiv zu negativ gewechselt hat, ist ein lokales Maximum.
ist ein lokales Maximum
ist ein lokales Maximum
Schritt 11