Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Differenziere.
Schritt 1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.2
Berechne .
Schritt 1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2
Schreibe als um.
Schritt 1.2.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.4
Mutltipliziere mit .
Schritt 1.3
Berechne .
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Schreibe als um.
Schritt 1.3.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.3.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.3.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3.3
Ersetze alle durch .
Schritt 1.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.5
Multipliziere die Exponenten in .
Schritt 1.3.5.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.3.5.2
Mutltipliziere mit .
Schritt 1.3.6
Mutltipliziere mit .
Schritt 1.3.7
Potenziere mit .
Schritt 1.3.8
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.3.9
Subtrahiere von .
Schritt 1.3.10
Mutltipliziere mit .
Schritt 1.4
Vereinfache.
Schritt 1.4.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 1.4.2
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 1.4.3
Vereine die Terme
Schritt 1.4.3.1
Kombiniere und .
Schritt 1.4.3.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.4.3.3
Subtrahiere von .
Schritt 1.4.3.4
Kombiniere und .
Schritt 2
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Schreibe als um.
Schritt 2.2.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.2.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3.3
Ersetze alle durch .
Schritt 2.2.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.5
Multipliziere die Exponenten in .
Schritt 2.2.5.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.2.5.2
Mutltipliziere mit .
Schritt 2.2.6
Mutltipliziere mit .
Schritt 2.2.7
Potenziere mit .
Schritt 2.2.8
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.2.9
Subtrahiere von .
Schritt 2.2.10
Mutltipliziere mit .
Schritt 2.3
Berechne .
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Schreibe als um.
Schritt 2.3.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.3.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3.3
Ersetze alle durch .
Schritt 2.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.5
Multipliziere die Exponenten in .
Schritt 2.3.5.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.3.5.2
Mutltipliziere mit .
Schritt 2.3.6
Mutltipliziere mit .
Schritt 2.3.7
Multipliziere mit durch Addieren der Exponenten.
Schritt 2.3.7.1
Bewege .
Schritt 2.3.7.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.3.7.3
Subtrahiere von .
Schritt 2.3.8
Mutltipliziere mit .
Schritt 2.4
Vereinfache.
Schritt 2.4.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 2.4.2
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 2.4.3
Vereine die Terme
Schritt 2.4.3.1
Kombiniere und .
Schritt 2.4.3.2
Kombiniere und .
Schritt 2.4.3.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 3
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 4
Schritt 4.1
Bestimme die erste Ableitung.
Schritt 4.1.1
Differenziere.
Schritt 4.1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.1.1.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.1.2
Berechne .
Schritt 4.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.2.2
Schreibe als um.
Schritt 4.1.2.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.2.4
Mutltipliziere mit .
Schritt 4.1.3
Berechne .
Schritt 4.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.3.2
Schreibe als um.
Schritt 4.1.3.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 4.1.3.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 4.1.3.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.3.3.3
Ersetze alle durch .
Schritt 4.1.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.3.5
Multipliziere die Exponenten in .
Schritt 4.1.3.5.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.1.3.5.2
Mutltipliziere mit .
Schritt 4.1.3.6
Mutltipliziere mit .
Schritt 4.1.3.7
Potenziere mit .
Schritt 4.1.3.8
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.1.3.9
Subtrahiere von .
Schritt 4.1.3.10
Mutltipliziere mit .
Schritt 4.1.4
Vereinfache.
Schritt 4.1.4.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 4.1.4.2
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 4.1.4.3
Vereine die Terme
Schritt 4.1.4.3.1
Kombiniere und .
Schritt 4.1.4.3.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.1.4.3.3
Subtrahiere von .
Schritt 4.1.4.3.4
Kombiniere und .
Schritt 4.2
Die erste Ableitung von nach ist .
Schritt 5
Schritt 5.1
Setze die erste Ableitung gleich .
Schritt 5.2
Finde den Hauptnenner der Terme in der Gleichung.
Schritt 5.2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 5.2.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Schritt 5.2.3
Das kgV ist die kleinste positive Zahl, die von all den Zahlen ohne Rest geteilt wird.
1. Notiere die Primfaktoren für jede Zahl.
2. Multipliziere jeden Faktor so oft, wie er maximal in einer der Zahlen vorkommt.
Schritt 5.2.4
Die Zahl ist keine Primzahl, da sie nur einen positiven Teiler hat, sich selbst.
Nicht prim
Schritt 5.2.5
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einer der Zahlen vorkommen.
Schritt 5.2.6
Die Teiler von sind , was -mal mit sich selbst multipliziert ist.
tritt -mal auf.
Schritt 5.2.7
Die Teiler von sind , was -mal mit sich selbst multipliziert ist.
tritt -mal auf.
Schritt 5.2.8
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einem der Terme vorkommen.
Schritt 5.2.9
Vereinfache .
Schritt 5.2.9.1
Mutltipliziere mit .
Schritt 5.2.9.2
Multipliziere mit durch Addieren der Exponenten.
Schritt 5.2.9.2.1
Mutltipliziere mit .
Schritt 5.2.9.2.1.1
Potenziere mit .
Schritt 5.2.9.2.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.2.9.2.2
Addiere und .
Schritt 5.3
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Schritt 5.3.1
Multipliziere jeden Term in mit .
Schritt 5.3.2
Vereinfache die linke Seite.
Schritt 5.3.2.1
Vereinfache jeden Term.
Schritt 5.3.2.1.1
Kürze den gemeinsamen Faktor von .
Schritt 5.3.2.1.1.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 5.3.2.1.1.2
Faktorisiere aus heraus.
Schritt 5.3.2.1.1.3
Kürze den gemeinsamen Faktor.
Schritt 5.3.2.1.1.4
Forme den Ausdruck um.
Schritt 5.3.2.1.2
Kürze den gemeinsamen Faktor von .
Schritt 5.3.2.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.2.1.2.2
Forme den Ausdruck um.
Schritt 5.3.3
Vereinfache die rechte Seite.
Schritt 5.3.3.1
Mutltipliziere mit .
Schritt 5.4
Löse die Gleichung.
Schritt 5.4.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5.4.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 5.4.2.1
Teile jeden Ausdruck in durch .
Schritt 5.4.2.2
Vereinfache die linke Seite.
Schritt 5.4.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 5.4.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.4.2.2.1.2
Dividiere durch .
Schritt 5.4.2.3
Vereinfache die rechte Seite.
Schritt 5.4.2.3.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 6
Schritt 6.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 6.2
Löse nach auf.
Schritt 6.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 6.2.2
Vereinfache .
Schritt 6.2.2.1
Schreibe als um.
Schritt 6.2.2.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 6.2.2.3
Plus oder Minus ist .
Schritt 6.3
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 6.4
Löse nach auf.
Schritt 6.4.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 6.4.2
Vereinfache .
Schritt 6.4.2.1
Schreibe als um.
Schritt 6.4.2.2
Ziehe Terme von unter der Wurzel heraus unter der Annahme reeller Zahlen.
Schritt 7
Kritische Punkte zum auswerten.
Schritt 8
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 9
Schritt 9.1
Vereinfache jeden Term.
Schritt 9.1.1
Vereinfache den Nenner.
Schritt 9.1.1.1
Wende die Produktregel auf an.
Schritt 9.1.1.2
Potenziere mit .
Schritt 9.1.1.3
Potenziere mit .
Schritt 9.1.2
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 9.1.3
Kürze den gemeinsamen Faktor von .
Schritt 9.1.3.1
Faktorisiere aus heraus.
Schritt 9.1.3.2
Faktorisiere aus heraus.
Schritt 9.1.3.3
Kürze den gemeinsamen Faktor.
Schritt 9.1.3.4
Forme den Ausdruck um.
Schritt 9.1.4
Kombiniere und .
Schritt 9.1.5
Mutltipliziere mit .
Schritt 9.1.6
Vereinfache den Nenner.
Schritt 9.1.6.1
Wende die Produktregel auf an.
Schritt 9.1.6.2
Potenziere mit .
Schritt 9.1.6.3
Potenziere mit .
Schritt 9.1.7
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 9.1.8
Kürze den gemeinsamen Faktor von .
Schritt 9.1.8.1
Faktorisiere aus heraus.
Schritt 9.1.8.2
Faktorisiere aus heraus.
Schritt 9.1.8.3
Kürze den gemeinsamen Faktor.
Schritt 9.1.8.4
Forme den Ausdruck um.
Schritt 9.1.9
Kombiniere und .
Schritt 9.1.10
Mutltipliziere mit .
Schritt 9.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 9.3
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Schritt 9.3.1
Mutltipliziere mit .
Schritt 9.3.2
Mutltipliziere mit .
Schritt 9.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 9.5
Vereinfache den Zähler.
Schritt 9.5.1
Mutltipliziere mit .
Schritt 9.5.2
Subtrahiere von .
Schritt 9.6
Ziehe das Minuszeichen vor den Bruch.
Schritt 10
ist ein lokales Maximum, weil der Wert der zweiten Ableitung negativ ist. Dies wird auch Prüfung der zweiten Ableitung genannt.
ist ein lokales Maximum
Schritt 11
Schritt 11.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 11.2
Vereinfache das Ergebnis.
Schritt 11.2.1
Vereinfache jeden Term.
Schritt 11.2.1.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 11.2.1.2
Multipliziere .
Schritt 11.2.1.2.1
Kombiniere und .
Schritt 11.2.1.2.2
Mutltipliziere mit .
Schritt 11.2.1.3
Vereinfache den Nenner.
Schritt 11.2.1.3.1
Wende die Produktregel auf an.
Schritt 11.2.1.3.2
Potenziere mit .
Schritt 11.2.1.3.3
Potenziere mit .
Schritt 11.2.1.4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 11.2.1.5
Kürze den gemeinsamen Faktor von .
Schritt 11.2.1.5.1
Faktorisiere aus heraus.
Schritt 11.2.1.5.2
Kürze den gemeinsamen Faktor.
Schritt 11.2.1.5.3
Forme den Ausdruck um.
Schritt 11.2.2
Ermittle den gemeinsamen Nenner.
Schritt 11.2.2.1
Schreibe als einen Bruch mit dem Nenner .
Schritt 11.2.2.2
Mutltipliziere mit .
Schritt 11.2.2.3
Mutltipliziere mit .
Schritt 11.2.2.4
Mutltipliziere mit .
Schritt 11.2.2.5
Mutltipliziere mit .
Schritt 11.2.2.6
Stelle die Faktoren von um.
Schritt 11.2.2.7
Mutltipliziere mit .
Schritt 11.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 11.2.4
Vereinfache den Ausdruck.
Schritt 11.2.4.1
Mutltipliziere mit .
Schritt 11.2.4.2
Addiere und .
Schritt 11.2.4.3
Subtrahiere von .
Schritt 11.2.5
Die endgültige Lösung ist .
Schritt 12
Dies sind die lokalen Extrema für .
ist ein lokales Maximum
Schritt 13