Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 2
Schritt 2.1
Faktorisiere die linke Seite der Gleichung.
Schritt 2.1.1
Es sei . Ersetze für alle .
Schritt 2.1.2
Faktorisiere aus heraus.
Schritt 2.1.2.1
Faktorisiere aus heraus.
Schritt 2.1.2.2
Faktorisiere aus heraus.
Schritt 2.1.2.3
Faktorisiere aus heraus.
Schritt 2.1.2.4
Faktorisiere aus heraus.
Schritt 2.1.2.5
Faktorisiere aus heraus.
Schritt 2.1.3
Faktorisiere.
Schritt 2.1.3.1
Faktorisiere durch Gruppieren.
Schritt 2.1.3.1.1
Stelle die Terme um.
Schritt 2.1.3.1.2
Für ein Polynom der Form schreibe den mittleren Term als eine Summe zweier Terme um, deren Produkt gleich und deren Summe gleich ist.
Schritt 2.1.3.1.2.1
Faktorisiere aus heraus.
Schritt 2.1.3.1.2.2
Schreibe um als plus
Schritt 2.1.3.1.2.3
Wende das Distributivgesetz an.
Schritt 2.1.3.1.3
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Schritt 2.1.3.1.3.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 2.1.3.1.3.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 2.1.3.1.4
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 2.1.3.2
Entferne unnötige Klammern.
Schritt 2.1.4
Ersetze alle durch .
Schritt 2.2
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2.3
Setze gleich .
Schritt 2.4
Setze gleich und löse nach auf.
Schritt 2.4.1
Setze gleich .
Schritt 2.4.2
Löse nach auf.
Schritt 2.4.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.4.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.4.2.2.1
Teile jeden Ausdruck in durch .
Schritt 2.4.2.2.2
Vereinfache die linke Seite.
Schritt 2.4.2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.4.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.4.2.2.2.1.2
Dividiere durch .
Schritt 2.4.2.2.3
Vereinfache die rechte Seite.
Schritt 2.4.2.2.3.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 2.5
Setze gleich und löse nach auf.
Schritt 2.5.1
Setze gleich .
Schritt 2.5.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 3
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 4
Der Wertebereich ist die Menge aller gültigen -Werte. Ermittle den Wertebereich mithilfe des Graphen.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 5
Bestimme den Definitionsbereich und den Wertebereich.
Definitionsbereich:
Wertebereich:
Schritt 6