Analysis Beispiele

Finde die lokalen Maxima und Minima y=x- natürlicher Logarithmus von x
Schritt 1
Schreibe als Funktion.
Schritt 2
Ermittle die erste Ableitung der Funktion.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Die Ableitung von nach ist .
Schritt 2.3
Stelle die Terme um.
Schritt 3
Ermittle die zweite Ableitung der Funktion.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 3.2.2
Schreibe als um.
Schritt 3.2.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.2.5
Mutltipliziere mit .
Schritt 3.2.6
Mutltipliziere mit .
Schritt 3.2.7
Mutltipliziere mit .
Schritt 3.2.8
Addiere und .
Schritt 3.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 3.4.2
Addiere und .
Schritt 4
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 5
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 5.1.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 5.1.2.2
Die Ableitung von nach ist .
Schritt 5.1.3
Stelle die Terme um.
Schritt 5.2
Die erste Ableitung von nach ist .
Schritt 6
Setze die erste Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Setze die erste Ableitung gleich .
Schritt 6.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 6.3
Finde den Hauptnenner der Terme in der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 6.3.2
Das kleinste gemeinsame Vielfache eines beliebigen Ausdrucks ist der Ausdruck.
Schritt 6.4
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.1
Multipliziere jeden Term in mit .
Schritt 6.4.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.2.1.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 6.4.2.1.2
Kürze den gemeinsamen Faktor.
Schritt 6.4.2.1.3
Forme den Ausdruck um.
Schritt 6.5
Löse die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.5.1
Schreibe die Gleichung als um.
Schritt 6.5.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.5.2.1
Teile jeden Ausdruck in durch .
Schritt 6.5.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.5.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 6.5.2.2.2
Dividiere durch .
Schritt 6.5.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.5.2.3.1
Dividiere durch .
Schritt 7
Ermittle die Werte, wo die Ableitung nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 8
Kritische Punkte zum auswerten.
Schritt 9
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 10
Berechne die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 10.2
Dividiere durch .
Schritt 11
ist ein lokales Minimum, weil der Wert der zweiten Ableitung positiv ist. Dies wird auch der Prüfung der zweiten Ableitung genannt.
ist ein lokales Minimum
Schritt 12
Ermittele den y-Wert, wenn .
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 12.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.2.1.1
Der natürliche Logarithmus von ist .
Schritt 12.2.1.2
Mutltipliziere mit .
Schritt 12.2.2
Addiere und .
Schritt 12.2.3
Die endgültige Lösung ist .
Schritt 13
Dies sind die lokalen Extrema für .
ist ein lokales Minimum
Schritt 14