Analysis Beispiele

Finde die lokalen Maxima und Minima y=8x^3-x^4+x^3(8-x)
Schritt 1
Schreibe als Funktion.
Schritt 2
Ermittle die erste Ableitung der Funktion.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Mutltipliziere mit .
Schritt 2.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3
Mutltipliziere mit .
Schritt 2.4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2.4.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.4.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.4.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.4.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.4.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.4.7
Mutltipliziere mit .
Schritt 2.4.8
Subtrahiere von .
Schritt 2.4.9
Bringe auf die linke Seite von .
Schritt 2.4.10
Schreibe als um.
Schritt 2.4.11
Bringe auf die linke Seite von .
Schritt 2.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1
Wende das Distributivgesetz an.
Schritt 2.5.2
Wende das Distributivgesetz an.
Schritt 2.5.3
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.3.1
Mutltipliziere mit .
Schritt 2.5.3.2
Mutltipliziere mit .
Schritt 2.5.3.3
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.3.3.1
Bewege .
Schritt 2.5.3.3.2
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.3.3.2.1
Potenziere mit .
Schritt 2.5.3.3.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.5.3.3.3
Addiere und .
Schritt 2.5.3.4
Subtrahiere von .
Schritt 2.5.3.5
Subtrahiere von .
Schritt 2.5.3.6
Addiere und .
Schritt 3
Ermittle die zweite Ableitung der Funktion.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.3
Mutltipliziere mit .
Schritt 3.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.3
Mutltipliziere mit .
Schritt 4
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 5
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 5.1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 5.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.1.2.3
Mutltipliziere mit .
Schritt 5.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 5.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.1.3.3
Mutltipliziere mit .
Schritt 5.1.4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.4.1
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 5.1.4.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 5.1.4.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 5.1.4.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 5.1.4.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.1.4.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.1.4.7
Mutltipliziere mit .
Schritt 5.1.4.8
Subtrahiere von .
Schritt 5.1.4.9
Bringe auf die linke Seite von .
Schritt 5.1.4.10
Schreibe als um.
Schritt 5.1.4.11
Bringe auf die linke Seite von .
Schritt 5.1.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.5.1
Wende das Distributivgesetz an.
Schritt 5.1.5.2
Wende das Distributivgesetz an.
Schritt 5.1.5.3
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.5.3.1
Mutltipliziere mit .
Schritt 5.1.5.3.2
Mutltipliziere mit .
Schritt 5.1.5.3.3
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.5.3.3.1
Bewege .
Schritt 5.1.5.3.3.2
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.5.3.3.2.1
Potenziere mit .
Schritt 5.1.5.3.3.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.1.5.3.3.3
Addiere und .
Schritt 5.1.5.3.4
Subtrahiere von .
Schritt 5.1.5.3.5
Subtrahiere von .
Schritt 5.1.5.3.6
Addiere und .
Schritt 5.2
Die erste Ableitung von nach ist .
Schritt 6
Setze die erste Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Setze die erste Ableitung gleich .
Schritt 6.2
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Faktorisiere aus heraus.
Schritt 6.2.2
Faktorisiere aus heraus.
Schritt 6.2.3
Faktorisiere aus heraus.
Schritt 6.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 6.4
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.1
Setze gleich .
Schritt 6.4.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.2.1
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 6.4.2.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.2.2.1
Schreibe als um.
Schritt 6.4.2.2.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 6.4.2.2.3
Plus oder Minus ist .
Schritt 6.5
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.5.1
Setze gleich .
Schritt 6.5.2
Addiere zu beiden Seiten der Gleichung.
Schritt 6.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 7
Ermittle die Werte, wo die Ableitung nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 8
Kritische Punkte zum auswerten.
Schritt 9
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 10
Berechne die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 10.1.2
Mutltipliziere mit .
Schritt 10.1.3
Mutltipliziere mit .
Schritt 10.2
Addiere und .
Schritt 11
Da es mindestens einen Punkt mit oder eine nicht definierte zweite Ableitung gibt, wende den ersten Ableitungstest an.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Teile in separate Intervalle um die -Werte herum auf, die die erste Ableitung zu oder nicht definiert machen.
Schritt 11.2
Setze eine beliebige Zahl, wie , aus dem Intervall in die erste Ableitung ein, um zu überprüfen, ob das Ergebnis negativ oder positiv ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 11.2.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.2.1.1
Potenziere mit .
Schritt 11.2.2.1.2
Mutltipliziere mit .
Schritt 11.2.2.1.3
Potenziere mit .
Schritt 11.2.2.1.4
Mutltipliziere mit .
Schritt 11.2.2.2
Addiere und .
Schritt 11.2.2.3
Die endgültige Lösung ist .
Schritt 11.3
Setze eine beliebige Zahl, wie , aus dem Intervall in die erste Ableitung ein, um zu überprüfen, ob das Ergebnis negativ oder positiv ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 11.3.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.3.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.3.2.1.1
Potenziere mit .
Schritt 11.3.2.1.2
Mutltipliziere mit .
Schritt 11.3.2.1.3
Potenziere mit .
Schritt 11.3.2.1.4
Mutltipliziere mit .
Schritt 11.3.2.2
Addiere und .
Schritt 11.3.2.3
Die endgültige Lösung ist .
Schritt 11.4
Setze eine beliebige Zahl, wie , aus dem Intervall in die erste Ableitung ein, um zu überprüfen, ob das Ergebnis negativ oder positiv ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.4.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 11.4.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.4.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.4.2.1.1
Potenziere mit .
Schritt 11.4.2.1.2
Mutltipliziere mit .
Schritt 11.4.2.1.3
Potenziere mit .
Schritt 11.4.2.1.4
Mutltipliziere mit .
Schritt 11.4.2.2
Addiere und .
Schritt 11.4.2.3
Die endgültige Lösung ist .
Schritt 11.5
Da die erste Ableitung das Vorzeichen um nicht gewechselt hat, ist dies kein lokales Maximum oder Minimum.
Kein lokales Maximum oder Minimum
Schritt 11.6
Da die erste Ableitung um herum das Vorzeichen von positiv zu negativ gewechselt hat, ist ein lokales Maximum.
ist ein lokales Maximum
ist ein lokales Maximum
Schritt 12