Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2
Berechne .
Schritt 1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.3
Mutltipliziere mit .
Schritt 1.3
Berechne .
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3
Mutltipliziere mit .
Schritt 1.4
Differenziere unter Anwendung der Konstantenregel.
Schritt 1.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.4.2
Addiere und .
Schritt 2
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Mutltipliziere mit .
Schritt 2.3
Berechne .
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3
Mutltipliziere mit .
Schritt 3
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 4
Schritt 4.1
Bestimme die erste Ableitung.
Schritt 4.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.1.2
Berechne .
Schritt 4.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.2.3
Mutltipliziere mit .
Schritt 4.1.3
Berechne .
Schritt 4.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.3.3
Mutltipliziere mit .
Schritt 4.1.4
Differenziere unter Anwendung der Konstantenregel.
Schritt 4.1.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.1.4.2
Addiere und .
Schritt 4.2
Die erste Ableitung von nach ist .
Schritt 5
Schritt 5.1
Setze die erste Ableitung gleich .
Schritt 5.2
Faktorisiere aus heraus.
Schritt 5.2.1
Faktorisiere aus heraus.
Schritt 5.2.2
Faktorisiere aus heraus.
Schritt 5.2.3
Faktorisiere aus heraus.
Schritt 5.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 5.4
Setze gleich .
Schritt 5.5
Setze gleich und löse nach auf.
Schritt 5.5.1
Setze gleich .
Schritt 5.5.2
Löse nach auf.
Schritt 5.5.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 5.5.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 5.5.2.2.1
Teile jeden Ausdruck in durch .
Schritt 5.5.2.2.2
Vereinfache die linke Seite.
Schritt 5.5.2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 5.5.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.5.2.2.2.1.2
Dividiere durch .
Schritt 5.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 6
Schritt 6.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 7
Kritische Punkte zum auswerten.
Schritt 8
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 9
Schritt 9.1
Mutltipliziere mit .
Schritt 9.2
Subtrahiere von .
Schritt 10
ist ein lokales Maximum, weil der Wert der zweiten Ableitung negativ ist. Dies wird auch Prüfung der zweiten Ableitung genannt.
ist ein lokales Maximum
Schritt 11
Schritt 11.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 11.2
Vereinfache das Ergebnis.
Schritt 11.2.1
Vereinfache jeden Term.
Schritt 11.2.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 11.2.1.2
Mutltipliziere mit .
Schritt 11.2.1.3
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 11.2.1.4
Mutltipliziere mit .
Schritt 11.2.2
Vereinfache durch Addieren von Zahlen.
Schritt 11.2.2.1
Addiere und .
Schritt 11.2.2.2
Addiere und .
Schritt 11.2.3
Die endgültige Lösung ist .
Schritt 12
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 13
Schritt 13.1
Vereinfache jeden Term.
Schritt 13.1.1
Kürze den gemeinsamen Faktor von .
Schritt 13.1.1.1
Faktorisiere aus heraus.
Schritt 13.1.1.2
Faktorisiere aus heraus.
Schritt 13.1.1.3
Kürze den gemeinsamen Faktor.
Schritt 13.1.1.4
Forme den Ausdruck um.
Schritt 13.1.2
Kombiniere und .
Schritt 13.1.3
Mutltipliziere mit .
Schritt 13.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 13.3
Kombiniere und .
Schritt 13.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 13.5
Vereinfache den Zähler.
Schritt 13.5.1
Mutltipliziere mit .
Schritt 13.5.2
Subtrahiere von .
Schritt 13.6
Kürze den gemeinsamen Teiler von und .
Schritt 13.6.1
Schreibe als um.
Schritt 13.6.2
Kürze die gemeinsamen Faktoren.
Schritt 13.6.2.1
Schreibe als um.
Schritt 13.6.2.2
Kürze den gemeinsamen Faktor.
Schritt 13.6.2.3
Forme den Ausdruck um.
Schritt 14
ist ein lokales Minimum, weil der Wert der zweiten Ableitung positiv ist. Dies wird auch der Prüfung der zweiten Ableitung genannt.
ist ein lokales Minimum
Schritt 15
Schritt 15.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 15.2
Vereinfache das Ergebnis.
Schritt 15.2.1
Vereinfache jeden Term.
Schritt 15.2.1.1
Wende die Produktregel auf an.
Schritt 15.2.1.2
Potenziere mit .
Schritt 15.2.1.3
Potenziere mit .
Schritt 15.2.1.4
Kürze den gemeinsamen Faktor von .
Schritt 15.2.1.4.1
Faktorisiere aus heraus.
Schritt 15.2.1.4.2
Kürze den gemeinsamen Faktor.
Schritt 15.2.1.4.3
Forme den Ausdruck um.
Schritt 15.2.1.5
Wende die Produktregel auf an.
Schritt 15.2.1.6
Potenziere mit .
Schritt 15.2.1.7
Potenziere mit .
Schritt 15.2.1.8
Multipliziere .
Schritt 15.2.1.8.1
Kombiniere und .
Schritt 15.2.1.8.2
Mutltipliziere mit .
Schritt 15.2.1.9
Dividiere durch .
Schritt 15.2.2
Ermittle den gemeinsamen Nenner.
Schritt 15.2.2.1
Schreibe als einen Bruch mit dem Nenner .
Schritt 15.2.2.2
Mutltipliziere mit .
Schritt 15.2.2.3
Mutltipliziere mit .
Schritt 15.2.2.4
Schreibe als einen Bruch mit dem Nenner .
Schritt 15.2.2.5
Mutltipliziere mit .
Schritt 15.2.2.6
Mutltipliziere mit .
Schritt 15.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 15.2.4
Vereinfache jeden Term.
Schritt 15.2.4.1
Mutltipliziere mit .
Schritt 15.2.4.2
Mutltipliziere mit .
Schritt 15.2.5
Vereinfache den Ausdruck.
Schritt 15.2.5.1
Subtrahiere von .
Schritt 15.2.5.2
Addiere und .
Schritt 15.2.5.3
Dividiere durch .
Schritt 15.2.6
Die endgültige Lösung ist .
Schritt 16
Dies sind die lokalen Extrema für .
ist ein lokales Maximum
ist ein lokales Minimum
Schritt 17