Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 2
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.4
Mutltipliziere mit .
Schritt 2.5
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.7
Mutltipliziere mit .
Schritt 2.8
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.9
Addiere und .
Schritt 2.10
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.11
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.12
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.13
Mutltipliziere mit .
Schritt 2.14
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.15
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.16
Mutltipliziere mit .
Schritt 2.17
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.18
Addiere und .
Schritt 3
Schritt 3.1
Wende das Distributivgesetz an.
Schritt 3.2
Vereinfache den Zähler.
Schritt 3.2.1
Vereinfache jeden Term.
Schritt 3.2.1.1
Multipliziere aus durch Multiplizieren jedes Terms des ersten Ausdrucks mit jedem Term des zweiten Ausdrucks.
Schritt 3.2.1.2
Vereinfache jeden Term.
Schritt 3.2.1.2.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.2.1.2.2
Multipliziere mit durch Addieren der Exponenten.
Schritt 3.2.1.2.2.1
Bewege .
Schritt 3.2.1.2.2.2
Mutltipliziere mit .
Schritt 3.2.1.2.2.2.1
Potenziere mit .
Schritt 3.2.1.2.2.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.2.1.2.2.3
Addiere und .
Schritt 3.2.1.2.3
Mutltipliziere mit .
Schritt 3.2.1.2.4
Mutltipliziere mit .
Schritt 3.2.1.2.5
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.2.1.2.6
Multipliziere mit durch Addieren der Exponenten.
Schritt 3.2.1.2.6.1
Bewege .
Schritt 3.2.1.2.6.2
Mutltipliziere mit .
Schritt 3.2.1.2.7
Mutltipliziere mit .
Schritt 3.2.1.2.8
Mutltipliziere mit .
Schritt 3.2.1.2.9
Mutltipliziere mit .
Schritt 3.2.1.2.10
Mutltipliziere mit .
Schritt 3.2.1.3
Subtrahiere von .
Schritt 3.2.1.4
Addiere und .
Schritt 3.2.1.5
Vereinfache jeden Term.
Schritt 3.2.1.5.1
Mutltipliziere mit .
Schritt 3.2.1.5.2
Mutltipliziere mit .
Schritt 3.2.1.5.3
Mutltipliziere mit .
Schritt 3.2.1.6
Multipliziere aus durch Multiplizieren jedes Terms des ersten Ausdrucks mit jedem Term des zweiten Ausdrucks.
Schritt 3.2.1.7
Vereinfache jeden Term.
Schritt 3.2.1.7.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.2.1.7.2
Multipliziere mit durch Addieren der Exponenten.
Schritt 3.2.1.7.2.1
Bewege .
Schritt 3.2.1.7.2.2
Mutltipliziere mit .
Schritt 3.2.1.7.2.2.1
Potenziere mit .
Schritt 3.2.1.7.2.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.2.1.7.2.3
Addiere und .
Schritt 3.2.1.7.3
Mutltipliziere mit .
Schritt 3.2.1.7.4
Mutltipliziere mit .
Schritt 3.2.1.7.5
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.2.1.7.6
Multipliziere mit durch Addieren der Exponenten.
Schritt 3.2.1.7.6.1
Bewege .
Schritt 3.2.1.7.6.2
Mutltipliziere mit .
Schritt 3.2.1.7.7
Mutltipliziere mit .
Schritt 3.2.1.7.8
Mutltipliziere mit .
Schritt 3.2.1.7.9
Mutltipliziere mit .
Schritt 3.2.1.7.10
Mutltipliziere mit .
Schritt 3.2.1.8
Addiere und .
Schritt 3.2.1.9
Addiere und .
Schritt 3.2.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 3.2.2.1
Subtrahiere von .
Schritt 3.2.2.2
Addiere und .
Schritt 3.2.3
Addiere und .
Schritt 3.2.4
Subtrahiere von .
Schritt 3.2.5
Subtrahiere von .
Schritt 3.3
Faktorisiere aus heraus.
Schritt 3.3.1
Faktorisiere aus heraus.
Schritt 3.3.2
Faktorisiere aus heraus.
Schritt 3.3.3
Faktorisiere aus heraus.
Schritt 3.3.4
Faktorisiere aus heraus.
Schritt 3.3.5
Faktorisiere aus heraus.
Schritt 3.4
Vereinfache den Nenner.
Schritt 3.4.1
Faktorisiere aus heraus.
Schritt 3.4.1.1
Faktorisiere aus heraus.
Schritt 3.4.1.2
Faktorisiere aus heraus.
Schritt 3.4.1.3
Faktorisiere aus heraus.
Schritt 3.4.1.4
Faktorisiere aus heraus.
Schritt 3.4.1.5
Faktorisiere aus heraus.
Schritt 3.4.2
Wende die Produktregel auf an.
Schritt 3.4.3
Potenziere mit .
Schritt 3.5
Kürze die gemeinsamen Faktoren.
Schritt 3.5.1
Faktorisiere aus heraus.
Schritt 3.5.2
Kürze den gemeinsamen Faktor.
Schritt 3.5.3
Forme den Ausdruck um.