Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2
Berechne .
Schritt 1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.3
Kombiniere und .
Schritt 1.2.4
Kombiniere und .
Schritt 1.2.5
Kürze den gemeinsamen Faktor von .
Schritt 1.2.5.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.5.2
Dividiere durch .
Schritt 1.3
Berechne .
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3
Mutltipliziere mit .
Schritt 1.4
Berechne .
Schritt 1.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.4.3
Mutltipliziere mit .
Schritt 1.4.4
Kombiniere und .
Schritt 1.4.5
Mutltipliziere mit .
Schritt 1.4.6
Kombiniere und .
Schritt 1.4.7
Kürze den gemeinsamen Teiler von und .
Schritt 1.4.7.1
Faktorisiere aus heraus.
Schritt 1.4.7.2
Kürze die gemeinsamen Faktoren.
Schritt 1.4.7.2.1
Faktorisiere aus heraus.
Schritt 1.4.7.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.4.7.2.3
Forme den Ausdruck um.
Schritt 1.4.7.2.4
Dividiere durch .
Schritt 1.5
Berechne .
Schritt 1.5.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.5.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.5.3
Mutltipliziere mit .
Schritt 2
Schritt 2.1
Differenziere.
Schritt 2.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2
Berechne .
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Mutltipliziere mit .
Schritt 2.3
Berechne .
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3
Mutltipliziere mit .
Schritt 2.4
Differenziere unter Anwendung der Konstantenregel.
Schritt 2.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.4.2
Addiere und .
Schritt 3
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 4
Schritt 4.1
Bestimme die erste Ableitung.
Schritt 4.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.1.2
Berechne .
Schritt 4.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.2.3
Kombiniere und .
Schritt 4.1.2.4
Kombiniere und .
Schritt 4.1.2.5
Kürze den gemeinsamen Faktor von .
Schritt 4.1.2.5.1
Kürze den gemeinsamen Faktor.
Schritt 4.1.2.5.2
Dividiere durch .
Schritt 4.1.3
Berechne .
Schritt 4.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.3.3
Mutltipliziere mit .
Schritt 4.1.4
Berechne .
Schritt 4.1.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.4.3
Mutltipliziere mit .
Schritt 4.1.4.4
Kombiniere und .
Schritt 4.1.4.5
Mutltipliziere mit .
Schritt 4.1.4.6
Kombiniere und .
Schritt 4.1.4.7
Kürze den gemeinsamen Teiler von und .
Schritt 4.1.4.7.1
Faktorisiere aus heraus.
Schritt 4.1.4.7.2
Kürze die gemeinsamen Faktoren.
Schritt 4.1.4.7.2.1
Faktorisiere aus heraus.
Schritt 4.1.4.7.2.2
Kürze den gemeinsamen Faktor.
Schritt 4.1.4.7.2.3
Forme den Ausdruck um.
Schritt 4.1.4.7.2.4
Dividiere durch .
Schritt 4.1.5
Berechne .
Schritt 4.1.5.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.5.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.5.3
Mutltipliziere mit .
Schritt 4.2
Die erste Ableitung von nach ist .
Schritt 5
Schritt 5.1
Setze die erste Ableitung gleich .
Schritt 5.2
Faktorisiere die linke Seite der Gleichung.
Schritt 5.2.1
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Schritt 5.2.1.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 5.2.1.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 5.2.2
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 5.2.3
Schreibe als um.
Schritt 5.2.4
Faktorisiere.
Schritt 5.2.4.1
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 5.2.4.2
Entferne unnötige Klammern.
Schritt 5.2.5
Kombiniere Exponenten.
Schritt 5.2.5.1
Potenziere mit .
Schritt 5.2.5.2
Potenziere mit .
Schritt 5.2.5.3
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.2.5.4
Addiere und .
Schritt 5.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 5.4
Setze gleich und löse nach auf.
Schritt 5.4.1
Setze gleich .
Schritt 5.4.2
Löse nach auf.
Schritt 5.4.2.1
Setze gleich .
Schritt 5.4.2.2
Addiere zu beiden Seiten der Gleichung.
Schritt 5.5
Setze gleich und löse nach auf.
Schritt 5.5.1
Setze gleich .
Schritt 5.5.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 6
Schritt 6.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 7
Kritische Punkte zum auswerten.
Schritt 8
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 9
Schritt 9.1
Vereinfache jeden Term.
Schritt 9.1.1
Potenziere mit .
Schritt 9.1.2
Mutltipliziere mit .
Schritt 9.1.3
Mutltipliziere mit .
Schritt 9.2
Vereinfache durch Substrahieren von Zahlen.
Schritt 9.2.1
Subtrahiere von .
Schritt 9.2.2
Subtrahiere von .
Schritt 10
Schritt 10.1
Teile in separate Intervalle um die -Werte herum auf, die die erste Ableitung zu oder nicht definiert machen.
Schritt 10.2
Setze eine beliebige Zahl, wie , aus dem Intervall in die erste Ableitung ein, um zu überprüfen, ob das Ergebnis negativ oder positiv ist.
Schritt 10.2.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 10.2.2
Vereinfache das Ergebnis.
Schritt 10.2.2.1
Vereinfache jeden Term.
Schritt 10.2.2.1.1
Potenziere mit .
Schritt 10.2.2.1.2
Potenziere mit .
Schritt 10.2.2.1.3
Mutltipliziere mit .
Schritt 10.2.2.1.4
Mutltipliziere mit .
Schritt 10.2.2.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 10.2.2.2.1
Subtrahiere von .
Schritt 10.2.2.2.2
Addiere und .
Schritt 10.2.2.2.3
Addiere und .
Schritt 10.2.2.3
Die endgültige Lösung ist .
Schritt 10.3
Setze eine beliebige Zahl, wie , aus dem Intervall in die erste Ableitung ein, um zu überprüfen, ob das Ergebnis negativ oder positiv ist.
Schritt 10.3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 10.3.2
Vereinfache das Ergebnis.
Schritt 10.3.2.1
Vereinfache jeden Term.
Schritt 10.3.2.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 10.3.2.1.2
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 10.3.2.1.3
Mutltipliziere mit .
Schritt 10.3.2.1.4
Mutltipliziere mit .
Schritt 10.3.2.2
Vereinfache durch Addieren von Zahlen.
Schritt 10.3.2.2.1
Addiere und .
Schritt 10.3.2.2.2
Addiere und .
Schritt 10.3.2.2.3
Addiere und .
Schritt 10.3.2.3
Die endgültige Lösung ist .
Schritt 10.4
Setze eine beliebige Zahl, wie , aus dem Intervall in die erste Ableitung ein, um zu überprüfen, ob das Ergebnis negativ oder positiv ist.
Schritt 10.4.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 10.4.2
Vereinfache das Ergebnis.
Schritt 10.4.2.1
Vereinfache jeden Term.
Schritt 10.4.2.1.1
Potenziere mit .
Schritt 10.4.2.1.2
Potenziere mit .
Schritt 10.4.2.1.3
Mutltipliziere mit .
Schritt 10.4.2.1.4
Mutltipliziere mit .
Schritt 10.4.2.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 10.4.2.2.1
Subtrahiere von .
Schritt 10.4.2.2.2
Subtrahiere von .
Schritt 10.4.2.2.3
Addiere und .
Schritt 10.4.2.3
Die endgültige Lösung ist .
Schritt 10.5
Da die erste Ableitung um herum das Vorzeichen von negativ zu positiv gewechselt hat, ist ein lokales Minimum.
ist ein lokales Minimum
Schritt 10.6
Da die erste Ableitung das Vorzeichen um nicht gewechselt hat, ist dies kein lokales Maximum oder Minimum.
Kein lokales Maximum oder Minimum
Schritt 10.7
Dies sind die lokalen Extrema für .
ist ein lokales Minimum
ist ein lokales Minimum
Schritt 11