Analysis Beispiele

Finde die lokalen Maxima und Minima f(x)=10/3x^3*51/2*x^2+5x+16
Schritt 1
Ermittle die erste Ableitung der Funktion.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Kombiniere und .
Schritt 1.2.2
Mutltipliziere mit .
Schritt 1.2.3
Mutltipliziere mit .
Schritt 1.2.4
Mutltipliziere mit .
Schritt 1.2.5
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.5.1
Faktorisiere aus heraus.
Schritt 1.2.5.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.5.2.1
Faktorisiere aus heraus.
Schritt 1.2.5.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.2.5.2.3
Forme den Ausdruck um.
Schritt 1.2.5.2.4
Dividiere durch .
Schritt 1.2.6
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.6.1
Bewege .
Schritt 1.2.6.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.2.6.3
Addiere und .
Schritt 1.2.7
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.8
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.9
Mutltipliziere mit .
Schritt 1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3
Mutltipliziere mit .
Schritt 1.4
Differenziere unter Anwendung der Konstantenregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.4.2
Addiere und .
Schritt 2
Ermittle die zweite Ableitung der Funktion.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Mutltipliziere mit .
Schritt 2.3
Differenziere unter Anwendung der Konstantenregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.2
Addiere und .
Schritt 3
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 4
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1
Kombiniere und .
Schritt 4.1.2.2
Mutltipliziere mit .
Schritt 4.1.2.3
Mutltipliziere mit .
Schritt 4.1.2.4
Mutltipliziere mit .
Schritt 4.1.2.5
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.5.1
Faktorisiere aus heraus.
Schritt 4.1.2.5.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.5.2.1
Faktorisiere aus heraus.
Schritt 4.1.2.5.2.2
Kürze den gemeinsamen Faktor.
Schritt 4.1.2.5.2.3
Forme den Ausdruck um.
Schritt 4.1.2.5.2.4
Dividiere durch .
Schritt 4.1.2.6
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.6.1
Bewege .
Schritt 4.1.2.6.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.1.2.6.3
Addiere und .
Schritt 4.1.2.7
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.2.8
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.2.9
Mutltipliziere mit .
Schritt 4.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.3.3
Mutltipliziere mit .
Schritt 4.1.4
Differenziere unter Anwendung der Konstantenregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.1.4.2
Addiere und .
Schritt 4.2
Die erste Ableitung von nach ist .
Schritt 5
Setze die erste Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Setze die erste Ableitung gleich .
Schritt 5.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Teile jeden Ausdruck in durch .
Schritt 5.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.2.1.2
Dividiere durch .
Schritt 5.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.1.1
Faktorisiere aus heraus.
Schritt 5.3.3.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.1.2.1
Faktorisiere aus heraus.
Schritt 5.3.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.3.3.1.2.3
Forme den Ausdruck um.
Schritt 5.3.3.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 5.4
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 5.5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 5.5.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 5.5.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 6
Ermittle die Werte, wo die Ableitung nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 7
Kritische Punkte zum auswerten.
Schritt 8
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 9
Berechne die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Schreibe als um.
Schritt 9.2
Wende die Produktregel auf an.
Schritt 9.3
Potenziere mit .
Schritt 9.4
Wende die Produktregel auf an.
Schritt 9.5
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 9.6
Potenziere mit .
Schritt 10
Da es mindestens einen Punkt mit oder eine nicht definierte zweite Ableitung gibt, wende den ersten Ableitungstest an.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Teile in separate Intervalle um die -Werte herum auf, die die erste Ableitung zu oder nicht definiert machen.
Schritt 10.2
Setze eine beliebige Zahl, wie , aus dem Intervall in die erste Ableitung ein, um zu überprüfen, ob das Ergebnis negativ oder positiv ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.2.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 10.2.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.2.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.2.2.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 10.2.2.1.2
Mutltipliziere mit .
Schritt 10.2.2.2
Addiere und .
Schritt 10.2.2.3
Die endgültige Lösung ist .
Schritt 10.3
Keine lokalen Maxima oder Minima für gefunden.
Keine lokalen Maxima oder Minima
Keine lokalen Maxima oder Minima
Schritt 11