Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3
Ersetze alle durch .
Schritt 1.2
Differenziere.
Schritt 1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.4
Mutltipliziere mit .
Schritt 1.2.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.2.6
Vereinfache den Ausdruck.
Schritt 1.2.6.1
Addiere und .
Schritt 1.2.6.2
Mutltipliziere mit .
Schritt 1.3
Vereinfache.
Schritt 1.3.1
Wende das Distributivgesetz an.
Schritt 1.3.2
Wende das Distributivgesetz an.
Schritt 1.3.3
Vereine die Terme
Schritt 1.3.3.1
Mutltipliziere mit .
Schritt 1.3.3.2
Potenziere mit .
Schritt 1.3.3.3
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.3.3.4
Addiere und .
Schritt 1.3.3.5
Mutltipliziere mit .
Schritt 2
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Mutltipliziere mit .
Schritt 2.3
Berechne .
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3
Mutltipliziere mit .
Schritt 3
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 4
Schritt 4.1
Bestimme die erste Ableitung.
Schritt 4.1.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 4.1.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 4.1.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.1.3
Ersetze alle durch .
Schritt 4.1.2
Differenziere.
Schritt 4.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.1.2.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.2.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.2.4
Mutltipliziere mit .
Schritt 4.1.2.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.1.2.6
Vereinfache den Ausdruck.
Schritt 4.1.2.6.1
Addiere und .
Schritt 4.1.2.6.2
Mutltipliziere mit .
Schritt 4.1.3
Vereinfache.
Schritt 4.1.3.1
Wende das Distributivgesetz an.
Schritt 4.1.3.2
Wende das Distributivgesetz an.
Schritt 4.1.3.3
Vereine die Terme
Schritt 4.1.3.3.1
Mutltipliziere mit .
Schritt 4.1.3.3.2
Potenziere mit .
Schritt 4.1.3.3.3
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.1.3.3.4
Addiere und .
Schritt 4.1.3.3.5
Mutltipliziere mit .
Schritt 4.2
Die erste Ableitung von nach ist .
Schritt 5
Schritt 5.1
Setze die erste Ableitung gleich .
Schritt 5.2
Faktorisiere die linke Seite der Gleichung.
Schritt 5.2.1
Faktorisiere aus heraus.
Schritt 5.2.1.1
Faktorisiere aus heraus.
Schritt 5.2.1.2
Faktorisiere aus heraus.
Schritt 5.2.1.3
Faktorisiere aus heraus.
Schritt 5.2.2
Schreibe als um.
Schritt 5.2.3
Faktorisiere.
Schritt 5.2.3.1
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 5.2.3.2
Entferne unnötige Klammern.
Schritt 5.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 5.4
Setze gleich .
Schritt 5.5
Setze gleich und löse nach auf.
Schritt 5.5.1
Setze gleich .
Schritt 5.5.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5.6
Setze gleich und löse nach auf.
Schritt 5.6.1
Setze gleich .
Schritt 5.6.2
Addiere zu beiden Seiten der Gleichung.
Schritt 5.7
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 6
Schritt 6.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 7
Kritische Punkte zum auswerten.
Schritt 8
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 9
Schritt 9.1
Vereinfache jeden Term.
Schritt 9.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 9.1.2
Mutltipliziere mit .
Schritt 9.2
Subtrahiere von .
Schritt 10
ist ein lokales Maximum, weil der Wert der zweiten Ableitung negativ ist. Dies wird auch Prüfung der zweiten Ableitung genannt.
ist ein lokales Maximum
Schritt 11
Schritt 11.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 11.2
Vereinfache das Ergebnis.
Schritt 11.2.1
Vereinfache jeden Term.
Schritt 11.2.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 11.2.1.2
Mutltipliziere mit .
Schritt 11.2.2
Vereinfache den Ausdruck.
Schritt 11.2.2.1
Subtrahiere von .
Schritt 11.2.2.2
Potenziere mit .
Schritt 11.2.3
Die endgültige Lösung ist .
Schritt 12
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 13
Schritt 13.1
Vereinfache jeden Term.
Schritt 13.1.1
Potenziere mit .
Schritt 13.1.2
Mutltipliziere mit .
Schritt 13.2
Subtrahiere von .
Schritt 14
ist ein lokales Minimum, weil der Wert der zweiten Ableitung positiv ist. Dies wird auch der Prüfung der zweiten Ableitung genannt.
ist ein lokales Minimum
Schritt 15
Schritt 15.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 15.2
Vereinfache das Ergebnis.
Schritt 15.2.1
Vereinfache jeden Term.
Schritt 15.2.1.1
Potenziere mit .
Schritt 15.2.1.2
Mutltipliziere mit .
Schritt 15.2.2
Vereinfache den Ausdruck.
Schritt 15.2.2.1
Subtrahiere von .
Schritt 15.2.2.2
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 15.2.3
Die endgültige Lösung ist .
Schritt 16
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 17
Schritt 17.1
Vereinfache jeden Term.
Schritt 17.1.1
Potenziere mit .
Schritt 17.1.2
Mutltipliziere mit .
Schritt 17.2
Subtrahiere von .
Schritt 18
ist ein lokales Minimum, weil der Wert der zweiten Ableitung positiv ist. Dies wird auch der Prüfung der zweiten Ableitung genannt.
ist ein lokales Minimum
Schritt 19
Schritt 19.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 19.2
Vereinfache das Ergebnis.
Schritt 19.2.1
Vereinfache jeden Term.
Schritt 19.2.1.1
Multipliziere mit durch Addieren der Exponenten.
Schritt 19.2.1.1.1
Mutltipliziere mit .
Schritt 19.2.1.1.1.1
Potenziere mit .
Schritt 19.2.1.1.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 19.2.1.1.2
Addiere und .
Schritt 19.2.1.2
Potenziere mit .
Schritt 19.2.2
Vereinfache den Ausdruck.
Schritt 19.2.2.1
Subtrahiere von .
Schritt 19.2.2.2
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 19.2.3
Die endgültige Lösung ist .
Schritt 20
Dies sind die lokalen Extrema für .
ist ein lokales Maximum
ist ein lokales Minimum
ist ein lokales Minimum
Schritt 21