Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 3
Stelle das Integral auf, um zu lösen.
Schritt 4
Schritt 4.1
Schreibe als um.
Schritt 4.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 4.2.1
Wende das Distributivgesetz an.
Schritt 4.2.2
Wende das Distributivgesetz an.
Schritt 4.2.3
Wende das Distributivgesetz an.
Schritt 4.3
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 4.3.1
Vereinfache jeden Term.
Schritt 4.3.1.1
Mutltipliziere mit .
Schritt 4.3.1.2
Kürze den gemeinsamen Faktor von .
Schritt 4.3.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 4.3.1.2.2
Forme den Ausdruck um.
Schritt 4.3.1.3
Kürze den gemeinsamen Faktor von .
Schritt 4.3.1.3.1
Kürze den gemeinsamen Faktor.
Schritt 4.3.1.3.2
Forme den Ausdruck um.
Schritt 4.3.1.4
Multipliziere .
Schritt 4.3.1.4.1
Mutltipliziere mit .
Schritt 4.3.1.4.2
Potenziere mit .
Schritt 4.3.1.4.3
Potenziere mit .
Schritt 4.3.1.4.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.3.1.4.5
Addiere und .
Schritt 4.3.2
Addiere und .
Schritt 5
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 6
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 7
Wende die Konstantenregel an.
Schritt 8
Schritt 8.1
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 8.2
Multipliziere die Exponenten in .
Schritt 8.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 8.2.2
Mutltipliziere mit .
Schritt 9
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 10
Vereinfache.
Schritt 11
Die Lösung ist die Stammfunktion der Funktion .