Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 2
Stelle das Integral auf, um zu lösen.
Schritt 3
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 4
Wende die Konstantenregel an.
Schritt 5
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 7
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 8
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 9
Schritt 9.1
Vereinfache.
Schritt 9.2
Vereinfache.
Schritt 9.2.1
Kombiniere und .
Schritt 9.2.2
Mutltipliziere mit .
Schritt 9.2.3
Mutltipliziere mit .
Schritt 9.2.4
Bringe auf die linke Seite von .
Schritt 9.2.5
Kürze den gemeinsamen Teiler von und .
Schritt 9.2.5.1
Faktorisiere aus heraus.
Schritt 9.2.5.2
Kürze die gemeinsamen Faktoren.
Schritt 9.2.5.2.1
Faktorisiere aus heraus.
Schritt 9.2.5.2.2
Kürze den gemeinsamen Faktor.
Schritt 9.2.5.2.3
Forme den Ausdruck um.
Schritt 10
Stelle die Terme um.
Schritt 11
Die Lösung ist die Stammfunktion der Funktion .