Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Ziehe die Differenzenquotient-Formel in Betracht.
Schritt 2
Schritt 2.1
Berechne die Funktion bei .
Schritt 2.1.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 2.1.2
Vereinfache das Ergebnis.
Schritt 2.1.2.1
Schreibe als um.
Schritt 2.1.2.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 2.1.2.2.1
Wende das Distributivgesetz an.
Schritt 2.1.2.2.2
Wende das Distributivgesetz an.
Schritt 2.1.2.2.3
Wende das Distributivgesetz an.
Schritt 2.1.2.3
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 2.1.2.3.1
Vereinfache jeden Term.
Schritt 2.1.2.3.1.1
Mutltipliziere mit .
Schritt 2.1.2.3.1.2
Mutltipliziere mit .
Schritt 2.1.2.3.2
Addiere und .
Schritt 2.1.2.3.2.1
Stelle und um.
Schritt 2.1.2.3.2.2
Addiere und .
Schritt 2.1.2.4
Wende das Distributivgesetz an.
Schritt 2.1.2.5
Vereinfache.
Schritt 2.1.2.5.1
Kombiniere und .
Schritt 2.1.2.5.2
Kürze den gemeinsamen Faktor von .
Schritt 2.1.2.5.2.1
Faktorisiere aus heraus.
Schritt 2.1.2.5.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.1.2.5.2.3
Forme den Ausdruck um.
Schritt 2.1.2.5.3
Kombiniere und .
Schritt 2.1.2.6
Die endgültige Lösung ist .
Schritt 2.2
Stelle um.
Schritt 2.2.1
Bewege .
Schritt 2.2.2
Stelle und um.
Schritt 2.3
Bestimme die Komponenten der Definition.
Schritt 3
Setze die Komponenten ein.
Schritt 4
Schritt 4.1
Vereinfache den Zähler.
Schritt 4.1.1
Subtrahiere von .
Schritt 4.1.2
Addiere und .
Schritt 4.1.3
Faktorisiere aus heraus.
Schritt 4.1.3.1
Faktorisiere aus heraus.
Schritt 4.1.3.2
Faktorisiere aus heraus.
Schritt 4.1.3.3
Faktorisiere aus heraus.
Schritt 4.1.4
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.1.5
Kombiniere und .
Schritt 4.1.6
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.1.7
Bringe auf die linke Seite von .
Schritt 4.2
Kombiniere und .
Schritt 4.3
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 4.4
Kürze den gemeinsamen Faktor von .
Schritt 4.4.1
Kürze den gemeinsamen Faktor.
Schritt 4.4.2
Forme den Ausdruck um.
Schritt 5